
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

160
DOI: 10.21279/1454-864X-16-I1-027
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

RESURFACING OLD DATA COMPRESSION & ENCRYPTION ALGORITHMS FOR

EXTRA SECURITY SHELL

Mitruț CARAIVAN1

Vasile DOBREF2
Paul BURLACU3
1 Lecturer PhD eng., Naval Academy “Mircea cel Batran”, Constanța, caraivanmitrut@yahoo.com
2 Professor PhD eng., Naval Academy “Mircea cel Batran”, Constanța, vasile.dobref@anmb.ro
3Lecturer PhD eng., Naval Academy “Mircea cel Batran”, Constanța, paul.burlacu@anmb.ro

Abstract: This paper presents a short history of data compression and encryption technologies starting with
World War I and their possible value today by resurfacing old and forgotten algorithms as an increased
security shell possibility for modern data files storage. It focuses on a case study using available internet
tools as of 2016 and emphasizes on the results which relieve a blind eye over old and dusty data
compression and encryption algorithms following data encapsulation, therefore showing the possibility of
adding easily an extra security layer to any contemporary cutting-edge data protection method.
Keywords: data compression, archive, security, data protection, encryption algorithms.

I. INTRODUCTION
This paper presents shortly some basic notions in
the domains of data compression and data
encryption, such as redundancy, compression
rate, entropy, data set volume and length, so on
and so forth. We have studied a classification of
classic entropic methods of data compression
based upon data loss criteria and symbols
encoding procedures and have focused on the
principal steps of Huffman variant for static
compression. We will prove in the next pages that
the use of such classic and long-forgotten
algorithms, such as Shannon-Fano [1], adaptive
Huffman coding [2]and variations, used together
with slight personal alterations in the process of
encoding the elements, while keeping a deceptive
nomination of the target digital files, may prove to
offer a considerable protection nowadays for
personal data files, counting exactly on their most
obvious quality: age. These 1940’s algorithms,
because of their age, although not being a
commercial – industrial-use viable solution, may in
fact prove to be one of the easiest methods of
data compression and encryption for the average
user, as long as the ‘compression’ part is not that
important for the end-user.
We are positioning this paper’s goal algorithm
somewhere between obfuscation-hashing and
data encryption in the true meaning of the word.
Disambiguation [3]: Hashing serves the purpose
of ensuring data integrity, i.e. if something is
changed, the user knows that the data was
altered. Obfuscation is used to hide the meaning
and is often used with computer code to help
prevent successful reverse engineering and/or
theft of a product’s functionality. On the other
hand, encryptionis for maintaining data
confidentiality and requires the use of a key (kept
secret) in order to return to meaningful data.

We are constantly drawing a parallel between the
two distinct domains of data compression and
data security – cryptology, while keeping a
common sense about the personal, home-use
applicability of state-of-the art algorithms.
II. DATA COMPRESSION
A tight concept related to data compression is
redundancy. The primary objective of a
compression method is to detect, locate and
eliminate redundancy, meaning the repeatability
of information within the data set. One other
important parameter defined for the compression
method performance is the rate of compression
(Equation 1):

Equation 1 Rate of Compression

where Lc is the length of the compressed data set
and Lo is the length of the original data set.
Ideally, γ=100% would mean a perfect
compression. Obviously, in practice we have only
γ<100%. Redundancy however is a constant of
the data set and it’s not dependent on the
compression algorithm used. It can only be
measured with a statistical model associated to
the initial data set, starting with the frequencies of
appearance of the alphabet of the data set. The
frequency of appearance is given by the number
of appearances of a specific symbol in the data
set and the data set volume. This volume is
different of the length, as it refers to the total
number of symbols of the data set, while the
length refers to the total number of bits needed to
represent the information.

mailto:caraivanmitrut@yahoo.com
mailto:vasile.dobref@anmb.ro
mailto:paul.burlacu@anmb.ro

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

161
DOI: 10.21279/1454-864X-16-I1-027
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

If we consider ν(s) as the appearance frequency
of the symbol s and this is an estimation of the
appearance probability of symbol s within the data
set, we can then calculate the minimum number of
bits needed to re-encode symbol s in order to
avoid any confusion with any other symbol. This is
called entropy (Equation 2) and it can be a
fraction, which in practice is rounded up to the
nearest integer. The difference between the
entropy and the frequency of appearance of a
specific symbol is a measure of the intrinsic
redundancy of that symbol within the data set.

Equation 2: Entropy of a symbol within a data set

The source entropy as a global information
characteristic is given by Equation 3:

Equation 3: Source Entropy

, where pi defined in Equation 4 represents the
probability distribution over Xalphabet.

Equation 4: Probability Distribution

The source entropy is expressed in bits/symbol
and indicates the mean quantity of information of
alphabet X.
Apart from this 1940’s idea of using alphabet
statistical-based models in order to reduce the
redundancy of the original data set, starting with
the 1970’s a new approach was evolving. This
was developed based on dictionaries for re-
encoding data, which meant replacing a whole
string of repeating symbols with only one code,
which was in fact an index pointer to the dictionary
entry. The link between statistics and the
dictionaries was now clear, and it could be defined
by entropy and redundancy.
All methods start with the idea of reducing the
natural redundancy of the initial data set and this
can be done only if some symbols or group of
symbols (subsets) are in some sort of repetition.
The methods based upon the appearance
frequency are usually parsing the data set twice,
as the first loop is necessary for determining the
frequencies. The methods based on grouping are
counting on the consecutive of separated
repeated appearance of the same symbol or
group of symbols, which requires only one loop
over the data set, with some exceptions on
specific areas.

Looking over the criteria for the symbol’s graphs
construction, there are static and dynamic
methods. The static establishes a correspondence
between the words and codes, which is constant
and fixed during time. The dynamic methods
determine this correspondence as variable over
time, based upon the relative frequency of the
words up to the current encoding moment.
Lossless Data Compression (Fig. 1) is the most
frequent case we encounter, as at the end we find
a perfect reconstruction of the initial information.

Fig. 1Lossless Data Compression

Lossy Data Compression (Fig. 2) accepts the
reduction of the source entropy, therefore the
decoder will not be capable of perfect
reconstruction of the initial source data.

Fig. 2Lossy Data Compression

Xest is sufficient close to X (this being defined by
a distance function) so the differences between
Xestand X will not exceed a certain threshold.
If γ<0, then the algorithm makes an expansion of
the initial data set, not a compression [4]. This is a
common practice encountered in hashing.
Hashingis used for validating the integrity of
content by detecting all modification thereof via
obvious changes to the hash output.Some of the
well-known examples are: SHA-3, MD5 (now
obsolete). Technically, hashing takes arbitrary
input and produce a fixed-length string that has
the following attributes:
• The same input will always produce the same
output;
• Multiple disparate inputs should not produce the
same output;
• It should not be possible to go from the output to
the input.
• Any modification of a given input should result in
drastic change to the hash.
Hashing is used in conjunction with authentication
to produce strong evidence that a given message
has not been modified. This is accomplished by
taking a given input, encrypting it with a given key,
hashing it, and then encrypting the key with the
recipient’s public key and signing the hash with
the sender’s private key.When the recipient opens

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

162
DOI: 10.21279/1454-864X-16-I1-027
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

the message, they can then decrypt the key with
their private key, which allows them to decrypt the
message. They then hash the message
themselves and compare it to the hash that was
signed by the sender. If they match it is an
unmodified message, sent by the correct person.
The purpose of obfuscation is to make something
harder to understand, usually having in mind the
purposes of making that specific item more
difficult to copy or to be hacked.
It’s important to note that obfuscation is not a
strong control (like properly employed encryption),
but rather an obstacle. Similar to encoding, it can
often be reversed by using the same technique
that obfuscated it. Otherwise it is simply a manual
process that takes time to work through.
Another key aspect about obfuscation is that there
is a limitation to how obscure the code can
become, depending on the content being
obscured. If you are obscuring computer code, for
example, the limitation is that the result must still
be consumable by the computer or else the
application will cease to function. Examples:
JavaScript Obfuscator, ProGuard.
III. DATA ENCRYPTION
Encryptiontransforms data in order to keep it
secret from other unintended parties. Rather than
focusing on usability, the goal is to ensure the
data cannot be consumed by anyone other than
the intended recipient.It uses a key, which is kept
secret, in conjunction with the plaintext and the
algorithm, in order to perform the encryption
operation. As such, the cypher-text, algorithm,
and key are all required to return to the plaintext.
The purpose of encoding is to transform data so
that it can be properly and safely consumed by a
different type of system(e.g.: binary data being
sent over email or viewing special characters on a
web page). The goal is not to keep information
secret, but rather to ensure that it’s able to be
properly consumed [3].
The first systematic results were found during
World War I, when the necessity of data
encryption and secret information transmission
became paramount. Complex encryption keys
usually bear two types of information: fake, which
can be deciphered without the key and the real
one, which uses the key known beforehand. No
matter how sophisticated the method of protection
is, there is always the possibility to reveal the
data, especially when the message bears
information about the protection key. There is no
ideal protection key. Using enough processing
power, trying different algorithms and methods,
any protection can be removed in the end in a
certain amount of time. This time represents in
fact the ultimate barrier against rogue recipients.

In support of this theory we present a short history
of MD5 – which is a hash function long used also
for encryption. Initially developed by Ron Rivest in
1991 as a hash function on 128 bits, it was long
time considered impenetrable and it made its way
as standard RFC1321 for application security and
into Cisco routers as main method for encryption,
the brand being well known for their high-end
intranet security. In 2004 there is the first
announcement of a possible security breach, in
2005 we get the first live demonstration for finding
the private key and in 2006 the published Klima
algorithm finds the key within a single minute on
an average notebook.
Encryption is usually done with misleading
information encapsulated in the data set creating
false tracks. Good compression on the other hand
means minimum redundancy and cutting down
redundancy means exactly the elimination of any
possible addition of misleading track. So, good
compression means weak encryption and vice-
versa. DES - Data Encryption Standard was once
a predominant symmetric-key algorithm for the
encryption of electronic data. It was developed in
the early 1970’s at IBM and it was highly
influential in the advancement of modern
cryptography in the academic world. DES is now
considered to be insecure for many applications.
It was replaced with Triple DES, which is 168-bit
gigantic task for the attacked to perform the
exhaustive search on e2168. Now these are being
replaced by AES – Advanced Encryption
Standard.
IV. STATE OF THE ART
NIST – National Institute of Standards and
Technology defines SP1800 Cyber-security
Practice Guides from 2015 onwards.
The RSA cryptosystem is widely used for secure
data transmission. It is considered an asymmetric
algorithm due to its use of a pair of keys. A public
key is used to encrypt the message and a private
key to decrypt it. The result of RSA encryption is a
huge batch of data which take quite a bit of time
and processing power to break, but with timing
and side-channel analysis attacks, adaptive chose
cipher-text this can be achieved.
Blowfish is yet another free algorithm designed to
replace DES, which claims it has never been
defeated. This symmetric cipher splits messages
into blocks of 64 bits and encrypts them
individually.
Two fish is using a 256 bits long key and is
regarded as one of the fastest available
symmetric techniques. It is also open-
source.Other highly-secure ciphers are Serpent
and RC6.
The Advanced Encryption Standard (AES) is the
algorithm today trusted as the standard by U.S.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

163
DOI: 10.21279/1454-864X-16-I1-027
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Government [5] and numerous organizations[6].
The algorithm is based on several substitutions,
permutations and linear transformations, each
executed on data blocks of 16 byte – therefore the
term “blockcipher”. Those operations are repeated
several times, called “rounds”. During each round,
a unique round-key is calculated out of the
encryption key, and incorporated in the
calculations. Based on the block structure of AES,
the change of a single bit, either in the key, or in
the plaintext block, results in a completely
different cipher-text block, which is a clear
advantage over traditional stream
ciphers.Although it is extremely efficient in its 128-
bit form, AES was also developed to use 192 and
256 bits for heavy duty encryption purposes. AES
is largely considered impervious to all attacks
except brute force, which attempts to decipher
messages using all possible combinations in the
128, 192 or 256-bit cipher. AES using the Rijndael
cipher [7] with a key size of 256 is the most
widely-accepted encryption algorithm today,
although it is not necessarily the most secure from
the mathematically point-of-view.
Cyber-attacks are constantly evolving, so security
specialists must stay up-to-date with state-of-the
art algorithms and their constant variations[8]. A
new method called Honey Encryption will deter
hackers by serving up fake data for every
incorrect guess of the key code. This unique
approach not only slows down attacks, but
potentially buries the correct key in a haystack of
false served-data. There are emerging methods
like quantum key distribution, which shares keys
embedded in photons over fiber optic,that might
have viability many years into the future.
Successful attacks on renowned targets such as
Yahoo, LinkedIn so on and so forth show that no
encryption is 100% bulletproof.Encryption keys
may be transmissible or not, symmetrical or
asymmetrical, public or private. However,
presently, we find the best protection method to
change the encryption key at a shorter time
interval than the estimated time for hacking it.
V. CASE STUDY
Until recently it was considered to be inefficient to
use compression algorithms after encryption, as
the cipher meant a very well balanced distribution
of characters, being almost statistically uniform,
which for a compression algorithm is a dead-end,
as it looks exactly for patterns and redundancy. A
good compression resulted after an encryption
process means actually the encryption is quite
poor. The natural succession of these operations
appears to be the following: compression and
therefore redundancy reduction and afterwards,
encryption, which involves finding the balance
with the first operation. In 1999, 3 teachers in

University of California, Berkeley [9] demonstrate
that the two processes can be inversed by using
the Slepian-Wolf theorem, while the compression
algorithm doesn’t use the same key in the
decompression process. Entropy of the set plays
a crucial role, by replacing the encryption key and
the demonstration is permanently showing the
Hamming distance between the codes. However,
the compression is not lossless at all times and
the method can be improved, as the code is open-
source.
Based on the above we have started an
investigation on our own, using a long-forgotten
Huffman algorithm, trying to show the benefits of a
custom-made compression algorithm in today’s
operating systems’ environment.
Step 1: We have parsed the data set sequentially
(symbol by symbol) and constructed the 0 order
alphabet A0, counting the number of appearances
of each symbol N(s) and sorted them in
descending order (Equation 5):

Equation 5: Symbols Alphabet 0 Order

Step 2: (optional, but recommended) we reorder
the alphabet elements to allow easier indexing of
intermediary binary tree nodes (Equation 6):

Equation 6: Symbols used for labelling the binary tree

Step 3:The construction of the binary tree is
realized simultaneously with the construction of
the new current alphabet. In order to obtain the
new alphabet from the old, we apply the following
rule: identification and elimination of each 2
symbols, having the smallest counters in the old
alphabet, by replacing these with a virtual symbol
which has its counter equal to the sum of the
previous. If there are more than 2 “weak symbols”
with the same counter, we chose the last two in
alphabetically order. Therefore, we will not need
another reorder of the new alphabet, the result
being already sorted out. The cardinal drops a unit
compared to the previous alphabet (Equation 7):

Equation 7: Binary tree construction

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

164
DOI: 10.21279/1454-864X-16-I1-027
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Step 4:We continuously repeat the previous step
in a loop for each current alphabet for N-1 times
until the binary tree gets a root (t1).
Step 5:We index all binary tree nodes with
consecutive numbers (left to right), which is also
an optional step, but very useful for the
decompression process.
This is a classic 1952 algorithm which can be
customized and improved. It is commonly used as
a didactic method showing an improvement of
Shannon-Fano algorithm [10]and while it performs
a data compression, it also encodes data and can
also encrypt it upon customization and user
request. It can be considered an old-fashioned
method of encryption, but for our case-study we
have tried to use it comparing it to current
software.
We have wrote a simple command prompt batch,
by simplifying the algorithm up to its classic
version, without tampering any of the process
steps and got the results in the following table:

File Initial SF Huffman
static

Huffman
adaptive

Win
RAR

Fbitmap
.bmp 586 kb 550 kb 542 kb 538 kb 212

kb
Text.doc 104 kb 80 kb 68 kb 60 kb 4 kb

Test.txt 30 bytes 39
bytes 79 bytes 28 bytes 97

bytes

Notepad.exe 50 kb 44 kb 36 kb 34 kb 21 kb

For the word document we have previously used
the default password protect function of Microsoft
Word, afterwards running our Huffman algorithm
on the file and keeping the extension .doc.
We have tried to open the resulting file with the
most well-known password cracking and
achieving software such as: Brutus, Rainbow

Crack, Passware, Wfuzz, Cain and Abel,
Appnimi, WinZIP, WinRAR, etc. with absolutely no
positive result in finding the “password” for our
document, as the default structure of the
document was obviously altered. It was also no
longer recognized by Microsoft Word, showing the
error in Fig. 3:

Fig. 3 Screenshot opening word document

The resulting file is in fact an archive with poor
compression rate properties, but also a custom-
made encryption which basically secures the file.
It also deceits any attacker by putting any
extension to the file-name, which inserts false-
tracks for password cracking software as well.
If finding a password for a word file nowadays is
done by cloud computing and tremendous
processing power, we have truly found a
deceptive way to encrypt our sensitive data for
probably 99% of the average attackers. While the
compression performances are not as good as
well-known WinRAR software, our succession of
bits in the data set using old Huffman adaptive
algorithm was somehow impenetrable, much like
MD5 hash function used for checking correct data
transmission in the past. Designed for a totally
different purpose, the MD5 was used for
encryption for years.

CONCLUSIONS
Considering the time period of about 70-80 years since notable results were recorded in the domains of data
compression and data encryption, we can notice the existence of multiple “old algorithms” with numerous
variations. If a person doesn’t know beforehand which algorithm we have used, nor the initial file type and its
extension (decryption methods generally being available for specific types of data: text, pictures, audio/video
streams), we can therefore state the chance of discovering the information that really is behind our
“compressed” file is quite limited. There is a great number of possible algorithms, with infinite number of
variations and customization possible. We are not talking only about advanced knowledge of mathematics,
statistics and programming, but also huge processing power needs and impossible brute-force attacks, as
this is clearly a dead-end scenario.
By altering the classical design of an old algorithm, usually by different symbol encoding or different
dictionary, we can say that we are introducing a new “encryption key”, which is known only to the person
creating the batch file.
We have successfully decompressed the files, being able to open the word versions afterwards, by entering
the password (which is an additional, modern step of encryption).
We can also think of a pattern for even and odd binary tree nodes, with different encoding. The possibilities
are infinite. The result is obtained with great ease and if the disk space is not an issue, then the benefit of
this encoding method is quite interesting in nowadays modern software environment.
We are aware that our method is not infallible, highly-specialized cryptographers could easily break our code,
however, due to the personal, home-use purpose of our case study, we can definitely state that using such

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

165
DOI: 10.21279/1454-864X-16-I1-027
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

algorithms provides more than enough protection against modern hackers and specialized software. These
algorithms are too “old”, but especially because of their age, they can pose real difficulties in determining the
true nature of the hidden data.

BIBLIOGRAPHY
[1] Shannon Fano Coding. Wikipedia.org. [Online]
https://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding.
[2] Wikipedia Adaptive Huffman Coding. Wikipedia.org. [Online]
https://en.wikipedia.org/wiki/Adaptive_Huffman_coding.
[3] Disambiguation. Daniel Miessler. [Online]
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/.
[4] Dobrescu, Radu and Kevorchian, S.,“Compresia Datelor”, Editura Academiei Romane, Bucuresti, 2002.
[5] NIST. Federal Information Processing Standards Publication 197, National Institute of Standards and
Technology, FIPS PUB 197, Washington DC, 2011.
[6] Boxcryptor. Boxcryptor. [Online] BoxCryptor.
https://www.boxcryptor.com/en/encryption.
[7] AES-Rijndael encryption algorithm. Code Planet. [Online]
http://www.codeplanet.eu/files/flash/Rijndael_Animation_v4_eng.swf.
[8] Ahmed, Mohiuddin, Sazzad, Shahriar T. M. and Mollah, Elias,“Cryptography and State-of-the-art
Techniques”,IJCSI International Journal of Computer Science Issues, Vol. 9. 3, Bangladesh, 2012.
[9] Johnson, Mark, Wagner, David and Ramchandran, Kannan, “On Compressing Encrypted Data without
the Encryption Key“, University of California, Berkeley, 1991.
[10] Stefanoiu, Dan,“Compresia Datelor”, Printech, Bucuresti, 2003.

