
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

A MULTI-FACTOR AUTHENTICATION SCHEME INCLUDING BIOMETRIC CHARACTERISTICS AS ONE
FACTOR

Marius Iulian MIHAILESCU1

Ciprian RACUCIU2

Dan Laurentiu GRECU3

Loredana Stefania NITA4

1Ph.D, Informatics Department, University of ,,Titu Maiorescu”, mihmariusiulian@gmail.com
2Ph.D, Informatics Department, University of ,,Titu Maiorescu”, ciprian.racuciu@gmail.com
3Ph.D, Informatics Department, University of ,,Titu Maiorescu”, danlaurentiugrecu@gmail.com
4MSc., Computer Science Department, University of Bucharest, stefanialoredanani@gmail.com

Abstract: Multi-factor authentication schemes have been proved to be very useful in many authentication systems including biometric
ones. In this paper we have proposed a multi-factor authentication scheme, in which one of the main components is represented by the
generation of a token and a password (known as the kernel of the multi-factor scheme) and another component is represented by a
module which will take one of the biometric characteristics (face image, handwriting, holographic signature). The token ID and
passcodes generated values will be encrypted and decrypted with RSA. We will show how the scheme works using a simulator that we
have developed for this goal.

Introduction
Multi-factor authentication (MFA) represents a technique
through which a user must follow more distinct authentication
steps in order to gain access control on a computer.
There are many types of factors [5, 6]:

• Knowledge factors are the most used techniques of
authentication, such as passwords, PIN, secret
questions, where only the user knows the right
answer.

• Possesion factorsuses techniques like tokens. For
example, it could be used connected tokens, where
the data is sent directly between a computer and the
token which is directly connected to that computer or
disconnected tokens, where there is no connection
between token and computer, the data being
displayed on a built-in screen and the user should
introduce it manually.

• Inherence factors are authentication techniques
based on the biometric characteristics of the user,
such as fingerprint, retina, and voice.

The MFA raises the security and reduces the risk that a forger
cracks the security through addition of an obstruction to entry,
making difficult for forger to login into the stolen account even if
he knows the password. This type of authentication is used in
many areas, such as companies, governments, and financial
area, where the security needs to be at a high level according
to the sensible data involved.
There are more tendencies in MFA. In [7] the authors present
some authentication techniques using a graphical password,
where the second authentication stage is password decoding
employing user’s device. The password is represented by an
image, and the user should decode it finding the suitable clicks
and their order on that image, which are given only through
user’s device as described in [7]. In [11] the authors propose an
authentication mechanism based on two stages, where the first
stage uses two factors in biometric authentication and the
second one integrates some factors to authenticate depending
on the biometric feature from the first stage. Another approach
for MFA are authentication systems used for wireless payment
[8].
We propose a software simulation application which uses multi
factors used in authentication process. In the first step, the user
is asked to introduce the username and password (knowledge
factor), in the second step the system sends a passcode to the
user’s phone or email and the user introduce it (possession
factor), and, in the last step, the user must authenticate with the
biometric characteristic (face, signature or fingerprint) which he
provided when the user account was created (inherence factor).

There are many methods for face recognition, according to [9].
For traditional face recognition system are used algorithms that
extract the user’s features from a picture, in 3D face recognition
are used sensors which collect data about the face’s shape,
while the skin texture analysis are based on visual particularies
of the skin.
Handwritten signature is one of the most used biometric
characteristic which allows a person to authenticate in a
system. It could be used in both online and offline applications.
In the online applications, when the user signs, the data are
dynamically retrieved from the signature, while the offline
applications are based on a scanned picture of handwritten
signature [10].
The goal of this article is to go further into the mechanism used
in authentication process based on biometric characteristics.
We will present our proposed algorithm that combine a
mechanism based on a Token ID and a passcode, with a
biometric characteristic in order to gain access to a system.
The First Version of Proposed Algorithm
Below, we will describe step-by-step how the algorithm is
working.

The general steps are the followings:
1. The user enters the user name and password;
2. Based on the user name, the application will generate

a token identification (Token ID– see Section 1.1);
3. The user will take the Token ID and will enter on his

device (mobile phone, tablet, token generator device
etc.) and it will generate a passcode(see Section 1.2).
Notice that the passcode it is generated based on the
Token ID.

4. The application will validate the Token ID and
passcode.

5. If everything is OK at step 4 then the user is asked to
choose his biometric characteristics (face image,
holographic signature, and handwriting).

1.1. Generating the Token ID

The function for generating the Token IDit is based on two
parameters, token_id_lengthand generating_characters. The
second one, characters, is optional in our proposed function,
because it comes already initialized in the declaration of the
function. Anytime, the length of the token id can vary. This
aspect will let us to improve the complexity of the token id and
to be adapted to different systems in which the authentication
based on a token and a passcode is necessary.
In order to generate the token ID, we will use the
RNGCryptoServiceProvider class [3] from .NET Framework.
The class will allow us to implement a cryptographic random

348

mailto:mihmariusiulian@gmail.com
mailto:ciprian.racuciu@gmail.com
mailto:danlaurentiugrecu@gmail.com
mailto:stefanialoredanani@gmail.com

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

number used as generation. The generation process is based
on the cryptographic service provider [1,2].
The steps of the algorithm for generating the passcode, is as
follows:

1. We set a length for the Token ID.
2. If the length is greater than 0, then we create a data

structure, called HashSetallowing only characters, in
which we will store the characters from the optional
variable, generating characters.

3. We will use a constant byteSizewhich is initialized
with 0x100 which means 256 bytes and it will be used
to test if the length of the allowed characters is less
than 256 bytes.

4. With the help of RNGCryptoServiceProvider class we
will build the token ID.

5. The token ID will be generated with the help of
StringBuilder class [4].

The following function (C# Source Code) represents the
algorithm and how it is implemented.

publicstringGeneratePassCode(inttoken_id_length,
stringgenerating_characters = "")
{
if (token_id_length< 0)
thrownewArgumentOutOfRangeException("length", "lungimea nu
poatesa fie mai mica de 0.");
if (string.IsNullOrEmpty(generating_characters))
thrownewArgumentException("generating_characters nu
poatesa fie gol.");
constintbyteSize = 0x100;
varallowed_characters = new

HashSet<char>(generating_characters).ToArray();

if (byteSize<allowed_characters.Length)
thrownew
ArgumentException(String.Format("generating_characterspoat
esacontina nu maimult de {0} caractere.", byteSize));
using (varrng = newRNGCryptoServiceProvider())
{
var result = newStringBuilder();
varbuf = newbyte[128];
while (result.Length<lungime)
{
rng.GetBytes(buf);
for (var i = 0; i <buf.Length&&result.Length<
lungime; ++i)
{
varoutOfRangeStart = byteSize - (byteSize %
set_caractere_permis.Length);
if (outOfRangeStart<= buf[i])
continue;result.Append(allowed_characters[buf[i] %
allowed_characters.Length]);
}
}
returnresult.ToString();
 }
}

1.2. Generating the passcode
Generating passcode based on the token ID is done using a
One-time password algorithm.
The general steps through which we have obtained the
passcode are the followings:

1. We take the token ID as the starting value, known as
seed.

2. We choose a hash function 𝑓𝑓(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (we have
used SHA256, SHA384, and SHA512) and we will
apply many times (let’s say for example, 500 times on
the token ID). The obtained value 𝑓𝑓500 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is
stored on the target computer.

3. After the user enters his user name and his
passwords, based on the generated token ID, a
passcode will be computed as being derived obtained
by applying the function 𝑓𝑓 for 499 times on the token

ID, which looks like 𝑓𝑓499(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) . The target
computer will authenticate the user with this
passcode as being the right one, because
𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡) is𝑓𝑓500 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), obtaining a value that
is store. The stored value is replaced with the
passcodeand if everything is ok, the user can login.

4. At the next authentication, the login process must be
followed by the result applied as𝑓𝑓448 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). The
result can be validated because if we apply the
hashing function we will obtain 𝑓𝑓449 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) which
is represented by the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡 , the value that is
stored somewhere on the computer after the previous
login authentication. In this case, the value will
replace 𝑝𝑝 and the user is authenticated.

For each of the processes described above, generating the
Token IDand passcode, are secured using a HMAC (keyed-
hash message authentication code).
The general form of the HMAC algorithm is applied as it follows:

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑘𝑘, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
= 𝐻𝐻((𝑡𝑡𝑡𝑡𝑘𝑘⊕ 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝) |𝐻𝐻((𝑡𝑡𝑡𝑡𝑘𝑘
⊕ 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝)|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))

and

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑘𝑘, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡)
= 𝐻𝐻((𝑡𝑡𝑡𝑡𝑘𝑘⊕ 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝) |𝐻𝐻((𝑡𝑡𝑡𝑡𝑘𝑘
⊕ 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝)|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡))

where:
- HMACrepresent the construction for calculating the

message authentication code (MAC) used for proving
the integrity and authenticity of Token ID and
passcode.

- Hrepresent the hash function (in our case, we have
implement some varieties for SHA256, SHA384, and
SHA512). The implementations of these functions are
presented in Section 1.3.

- keyrepresent the secret key. In our proposal we have
used some keys generated with OpenSSL 1.0.2a and
imported them into the application, as we can see in
Figure 1 and 2. The keys have been generated using
DSA and RSA algorithms. In order to secure the
token ID and passcode, you have to choose one of
the two keys.

- token ID and passcode represent the two values that
need to be authenticated.

- | represent the concatenation process.
- ⊕represent the exlcusive OR operation (XOR).
- outer_paddingand inner_paddingrepresent two

hexadecimal constants.

349

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

Figure 1 RSA key

Figure 2 DSA key

1.3. Implementation of the hash functions SHA256,

SHA384, and SHA512
In this section we will describe how the mentioned hash
functions are implemented.
The hash functions are implemented using C# as programming
language.
The following function, ComputeHash, will compute the hash for
a specific value, in our cases the values will be token ID or
passcode. The source code is very easy to understand and to
implement it.

publicstringComputeHash(string value, string hash,
byte[] salt)
{
intminSaltLength = 4;
intmaxSaltLength = 16;

byte[] SaltBytes = null;

if (salt != null)
SaltBytes = salt;
else
 {

Random r = newRandom();
intSaltLength = r.Next(minSaltLength,
maxSaltLength);
SaltBytes = newbyte[SaltLength];
RNGCryptoServiceProviderrng =
newRNGCryptoServiceProvider();
rng.GetNonZeroBytes(SaltBytes);
rng.Dispose();
}

byte[] plainData =
ASCIIEncoding.UTF8.GetBytes(value);

byte[] plainDataAndSalt = newbyte[plainData.Length
+ SaltBytes.Length];
for (int x = 0; x <plainData.Length; x++)
plainDataAndSalt[x] = plainData[x];

for (int n = 0; n <SaltBytes.Length; n++)
plainDataAndSalt[plainData.Length + n] =
SaltBytes[n];

byte[] hashValue = null;

switch (hash)
{
case"SHA256":
SHA256Managedsha = newSHA256Managed();
hashValue = sha.ComputeHash(plainDataAndSalt);
break;

case"SHA384":
SHA384Managed sha1 = newSHA384Managed();
hashValue = sha1.ComputeHash(plainDataAndSalt);
break;

case"SHA512":
SHA512Managed sha2 = newSHA512Managed();
hashValue = sha2.ComputeHash(plainDataAndSalt);
break;
}

byte[] result = newbyte[hashValue.Length +
SaltBytes.Length];

for (int x = 0; x <hashValue.Length; x++)
result[x] = hashValue[x];
for (int n = 0; n <SaltBytes.Length; n++)
result[hashValue.Length + n] = SaltBytes[n];

returnConvert.ToBase64String(result);
}

The next function, called Confirm, will return true or false if the
hash value of the token ID or passcode is equal with the hash
value stored on the target machine.

publicbool Confirm(stringplainText,
stringhashValue, string hash)
{
byte[] hashBytes =
Convert.FromBase64String(hashValue);
inthashSize = 0;
switch (hash)
 {
case"SHA256":
hashSize = 32;
break;
case"SHA384":
hashSize = 48;
break;
case"SHA512":
hashSize = 64;
break;
}

byte[] saltBytes = newbyte[hashBytes.Length -
hashSize];
for (int x = 0; x <saltBytes.Length; x++)
saltBytes[x] = hashBytes[hashSize + x];

stringnewHash = ComputeHash(plainText, hash,
saltBytes);

return (hashValue == newHash);
}

1.4. Biometric Characteristics Module
The biometric module authentication takes place when the
Token ID and passcode has been validated. In this case, the
user has to choose the biometric type (face, holographic
signature, or handwriting) in order to authenticate. We assume
that we have already the biometric characteristics enrolled into
the system.
In Figure 3 we can observe that the user has the possibility to
choose the biometric type.
In this moment we don’t have any security mechanism to
assure the integrity of the biometric template used for storing
the subject biometric data.

350

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

Figure 3 Biometric Types

Describing the Software Simulation Application (Multi-
Factor)
The goal of simulation software application is to help us to
understand how the multi-factor authentication schemes can be
adapted to biometric systems.

The application is built in 5 easy steps, as follows:
1. Connecting to the database (Figure 4);
2. Enter the credentials (Figure 5);
3. Multi-factor Authentication Core (Figure 6);

1.5. Generating Token ID (Figure 7);
1.6. Generating passcode (Figure 8);

2. Passing the passcode to the authentication
application (Figure 6);

3. Biometric Authentication (Figure 6).

Figure 4 Connecting to database

Figure 5 Enter the credentials

Figure 6 Multi-factor Authentication Core

Figure 7 Generating the Token ID

Figure 8 Generating the passcode

Conclusions
In this paper we have presented a framework that is used as simulation software in order to help us to understand how the multi-factor
authentication schemes are working.
We have proposed some specific algorithms that can be used in order to generate token IDs and passcodes. Over these two processes
we apply a security mechanism in order to assure the authenticity and integrity of the token ID and passcode.
The framework is not the final version of the proposed work. As we have stated above, this is one of the first version of the software and
many other things will be done in future researching work.

Bibliography
[1]. Cryptographic Service Provider, http://en.wikipedia.org/wiki/Cryptographic_Service_Provider
[2]. Microsoft Cryptographic Service Providers, https://msdn.microsoft.com/en-

us/library/windows/desktop/aa386983%28v=vs.85%29.aspx
[3]. RNGCryptoServiceProvider Class, https://msdn.microsoft.com/en-

us/library/system.security.cryptography.rngcryptoserviceprovider%28v=vs.110%29.aspx
[4]. StringBuilder Class, https://msdn.microsoft.com/en-us/library/system.text.stringbuilder%28v=vs.110%29.aspx
[5]. Multi-factor authentication, http://en.wikipedia.org/wiki/Multi-factor_authentication#Implementation_considerations
[6]. Emiliano De Cristofaro, Honglu Du, JulienFreudiger, Greg Norcie, A Comparative Usability Study ofTwo-Factor Authentication, 8th

NDSS Workshop on Usable Security (USEC 2014), http://arxiv.org/pdf/1309.5344.pdf.
[7]. AlirezaPirayeshSabzevar, Angelos Stavros, Universal Multi-Factor Authentication Using Graphical Passwords, Signal Image

Technology and Internet Based Systems, 2008. SITIS '08. IEEE International Conference, Pages:625 – 632, ISBN: 978-0-7695-
3493-0, http://cs.gmu.edu/~astavrou/research/StavrouUniversalMultiFactorAuthentication.pdf

[8]. SugataSanyal, AyuTiwari and SudipSanyal, A Multifactor Secure Authentication System For Wireless Payment, IADIS International
Conference on Applied Computing Proceedings of the IADIS International Conference on Applied Computing, Salamanca, Spain,
18-20 February 2007, http://www.tifr.res.in/~sanyal/papers/Multifactor%20Secure%20Authentication.pdf.

[9]. Facial recognition system, http://en.wikipedia.org/wiki/Facial_recognition_system#Software.
351

http://en.wikipedia.org/wiki/Cryptographic_Service_Provider
https://msdn.microsoft.com/en-us/library/windows/desktop/aa386983%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa386983%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder%28v=vs.110%29.aspx
http://en.wikipedia.org/wiki/Multi-factor_authentication%23Implementation_considerations
http://arxiv.org/pdf/1309.5344.pdf
http://cs.gmu.edu/%7Eastavrou/research/StavrouUniversalMultiFactorAuthentication.pdf
http://www.tifr.res.in/%7Esanyal/papers/Multifactor%20Secure%20Authentication.pdf
http://en.wikipedia.org/wiki/Facial_recognition_system%23Software

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

[10]. AshishDhawan, Aditi R. Ganesan,Handwritten Signature Verification,ECE 533 – Project
Report, https://homepages.cae.wisc.edu/~ece533/project/f05/ganesan_dhawanrpt.pdf

[11]. AbhilashaBhargav-Spantzel, Anna C. Squicciarini, Shimon Modi, Matthew Young, Elisa Bertino, Stephen J. Elliott, Privacy
Preserving Multi-Factor Authentication with Biometrics,DIM '06 Proceedings of the second ACM workshop on Digital identity
management, Pages 63 – 72, ACM New York, NY, USA 2006, ISBN: 1-59593-547-
9, http://homes.cerias.purdue.edu/~bhargav/pdf/jcs07Bio.pdf

352

https://homepages.cae.wisc.edu/%7Eece533/project/f05/ganesan_dhawanrpt.pdf
http://homes.cerias.purdue.edu/%7Ebhargav/pdf/jcs07Bio.pdf

	A MULTI-FACTOR AUTHENTICATION SCHEME INCLUDING BIOMETRIC CHARACTERISTICS AS ONE FACTOR

