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Abstract. Linear codes are algebraic codes, typically over a finite field, where the sum of two 

codewords is always a codeword and the multiplication of a codeword by a field element is also 

a codeword. Linear codes that are also block codes are linear block codes. These codes are used 

for error control coding, satellite and deep space communications, and they are used for magnetic 

and optical data storage in hard disks and magnetic tapes and single error correcting and double 

error correcting code used to improve semiconductor memories. An advantage of linear block 
codes is that they are easiest to detect and correct errors. Another advantage is that extra parity 

bit does not convey any information but detects and correct errors. Among the disadvantages of 

linear block codes are that the transmission bandwidth is more and that extra bit reduces the bit 

rate of transmitter and also its power. Cyclic codes are special linear block codes with one extra 

property. In a cyclic code, if a codeword is cyclically shifted (rotated), the result is another 
codeword.  

1. Theoretical considerations 

Definition 1. Let 𝐹 be a finite set called alphabet, having 𝑞 = 𝑐𝑎𝑟𝑑(𝐹) = |𝐹| elements. A subset   𝐶 ≠
∅, 𝐶 ⊂ 𝐹𝑛 is called code over the alphabet 𝐹. The elements of 𝐹𝑛 are called words, the elements of 𝐶 

are called codewords, and 𝑛 is the length of the code. For 𝑞 = 2 the code is called binary. 

Definition 2. A block code is said to be linear code if its codewords satisfy the condition that the 

sum of any two codewords gives another codeword, i.e. 𝑐𝑝 = 𝑐𝑖 + 𝑐𝑘. 

Example 3. The block code {0000, 0101, 1010, 1111} is linear. 

Indeed, if we consider the codewords 0101 and 1010, then their sum 0101 + 1010 = 1111 gives us a 
codeword in the block code. 
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      The general representation of the codeword 
 

This representation of the codeword will consist in two section: first k bits and second part contains 

(n-k) bits. So, n-digit codeword made up of k information digits and (n-k) redundant parity check digits. 

The rate of efficiency for this code is 𝑟 =
𝑘

𝑛
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑
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A linear block code is a linear combination of parity bits and message bits. First portion of k bits is 

always identical to the message sequence to be transmitted and the second portion of (n-k) bits are 
computed from message bits according to the encoding rule and is called parity bits. 

 

 
 

 

 
  Codeword length = n bits 

 

Structure of a codeword 
 

 

Remark 4. In linear block code, each block containing k messages bits is encoded into a block of n 
bits by adding (n-k) parity check bits. 

Consider a pair of code vectors 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝐹𝑛 and 𝑦 = (𝑦1, … , 𝑦𝑛) ∈ 𝐹𝑛 that have the same 

number of elements. 

Definition 5. Hamming distance is an application 𝑑: 𝐹𝑛 × 𝐹𝑛 → ℝ given by 

𝑑(𝑥, 𝑦) = |{𝑖 | 𝑥𝑖 ≠ 𝑦𝑖}|, 
 𝑑(𝑥, 𝑦) is defined as the number of locations in which their respective elements differ. 

Example 6. Let’s consider the linear block code {0000, 0101, 1010, 1111}. Let’s calculate the 
Hamming distance. 

𝑑(0000, 0101) = 2; 

𝑑(0101, 1010) = 4; 

d(1010, 1111) = 2. 

Definition 7. Hamming weight 𝑤(𝑥) is defined as the number of elements in the code vector. In 

other words, the weight of a codeword is the number of nonzero elements. 

Example 8. Let’s consider the linear block code {0000, 0101, 1010, 1111}. Let’s calculate the 
Hamming weight. 

𝑤(0101) = 2; 

𝑤(1010) = 2; 

𝑤(1111) = 4. 
Definition 9. The minimum distance of a block code C is defined as  

𝑑𝑚𝑖𝑛 = min
𝑥,𝑦∈𝐶,𝑥≠𝑦

𝑑(𝑥, 𝑦) 

the smallest hamming distance between any pair of code vectors in the code or smallest hamming weight 
of the nonzero vectors in the code. 

Efficient codes have both 𝑑𝑚𝑖𝑛 and 𝑐𝑎𝑟𝑑 𝐶. It is very important to know the minimum distance of a 

code. 

Example 10. For the linear block code {0000, 0101, 1010, 1111}, the minimum distance of 

codewords is 2. 

Theorem 11. A code C with minimal distance 𝑑 = 𝑑𝑚𝑖𝑛 can detect 𝑑 − 1 errors and correct [
𝑑−1

2
] 

errors. Moreover, these margins are the best possible. 
Proof.  

Suppose that a word 𝑥 is obtained from a word in code 𝑐 ∈ 𝐶 by inserting at most 𝑑 − 1 errors. So, 

𝑑(𝑥, 𝑐) ≤ 𝑑 − 1 which means that 𝑥 cannot be a codeword because the minimum distance is 𝑑. On the 

other hand, if 𝑑𝑚𝑖𝑛 = 𝑑, then there are words in code 𝑐, 𝑐′ such that 𝑑(𝑐, 𝑐′) = 𝑑, that is, we could obtain 

𝑐′ from 𝑐 by making exactly 𝑑 errors. The code cannot detect such errors. 

To prove the assertion about error correction, we first assume that 𝑑 = 2𝑡 + 1. Let 𝑐 ∈ 𝐶 and suppose 

that 𝑥 is obtained from 𝑐 after introducing 𝑡 errors. Can 𝑥 be obtained from another word 𝑐′ in the code, 

with at most 𝑡 errors? If that were to happen, we would have 𝑑(𝑐, 𝑐′) ≤ 𝑑(𝑐, 𝑥) + 𝑑(𝑥, 𝑐′) ≤ 𝑡 + 𝑡 =

Message bits length = k Parity check bits = (n-k) 



 
 

 

 
 

 

2𝑡. But 𝑐 ≠ 𝑐′ and so 𝑑(𝑐, 𝑐′) ≥ 𝑑(𝐶), from which it follows that 𝑑(𝐶) ≤ 2𝑡, which contradicts the 

hypothesis. If 𝑐, 𝑐′ were codewords such that 𝑑(𝑐, 𝑐′) = 2𝑡 + 1, then making 𝑡 + 1 errors in 𝑐 we could 

get 𝑐′. 
Remark 12. An (𝑛, 𝑘) linear block code has the powers to correct all error patterns of weight 𝑡 or 

less if and only if 𝑑(𝑥𝑖 , 𝑥𝑗) ≤ 2𝑡 + 1. An (𝑛, 𝑘) linear block code of minimum distance 𝑑𝑚𝑖𝑛 can correct 

up to 1 error if and only if 𝑡 =
𝑑𝑚𝑖𝑛−1

2
. 

 

2. Properties of linear block codes 

i) The all zero codeword [0,0,0, … ,0] is a valid codeword. 

ii) Given any 3 codewords 𝑐𝑖 , 𝑐𝑗 , 𝑐𝑘 such that 𝑐𝑘 = 𝑐𝑖 + 𝑐𝑗  then the distance between two codewords will 

be equal to the weight of the codewords i.e. 𝑑(𝑐𝑖 , 𝑐𝑗) = 𝑤(𝑐𝑘). 

     Let’s consider 𝑐𝑖 = 0101, 𝑐𝑗 = 1010. 

𝑐𝑖 + 𝑐𝑗 = 0101 + 1010 = 1111 = 𝑐𝑘. 

𝑑(𝑐𝑖 , 𝑐𝑗) = 4, 𝑤(𝑐𝑘) = 4. 

So, this block code follows the property of linear block codes. 

iii) The minimum distance of a linear block code is equal to the minimum weight of its nonzero 

codewords. 

𝑑𝑚𝑖𝑛 = min{𝑤𝑡(𝑥 + 𝑦)|𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦} 
= 𝑚𝑖𝑛{𝑤𝑡(𝑣)|𝑣 ∈ 𝐶, 𝑣 ≠ 0}   

    Example 13. Let’s consider (7,4)-Hamming code.  

Let’s choose the codewords 𝑐1 = 0001011 and 𝑐10 = 1010011. 

From the definition of linear block codes we have that: 

𝑐1 + 𝑐10 = 0001011 + 1010011 

      = 1011000 = 𝑐11 
So, 𝑐11 = 𝑐1 + 𝑐10. 

𝑐0 = 0000000 is a codeword in the block code. 

Hamming distance for 𝑐1 = 0001011 is 3 and Hamming distance for 𝑐10 = 1010011 is 4. 

So, minimum Hamming distance for 𝑐1 and 𝑐10 is 𝑑(𝑐1, 𝑐10) = 3. 

The weight of 𝑐11 is 𝑤(𝑐11) = 3. 

So, the condition is satisfied: 𝑑(𝑐1 , 𝑐10) = 𝑤(𝑐11). 

 

3. Coding and decoding of linear block codes 

(i) Parity check matrix (H) 

The parity check matrix is represented as 

𝐻 = [𝑃𝑡: 𝐼𝑛−𝑘] 
where 𝑃𝑡 is the transpose parity matrix and 𝐼𝑛−𝑘 is the identity matrix of dimension 𝑛 − 𝑘. 

Parity check matrix is used to verify the codeword 𝑐 generated by generator matrix. 
 

 

 
 

where C is the codeword, R is the received codeword and E is the error vector. 

 
(ii) Steps of coding and decoding 

1) C is correct codeword if 𝐶 ⋅ 𝐻𝑡 = 0. 

2) Received codeword R is a combination of codeword C and an error vector E 

𝑅 = 𝐶 + 𝐸 
3) The error syndrome is given as 

𝑆 = 𝑅 ∙ 𝐻𝑡  

    TX 

    C     

Channel     Rx     R=C+E 



 
 

 

 
 

 

If 𝑠 = 0, then the codeword C is valid. 

If 𝑠 ≠ 0, then the codeword C is invalid. 

 

Example 14. Consider a (7,4) block code generated by the generator matrix 

𝐺 = [

1
0

0
0

0
0

0
0

:
:

1
1

1
1

1
0

0
0

0
0

1
0

0
1

:
:

1
0

0
1

1
1

] 

We’ll find out the error vector and let’s suppose that the received codeword R is 1001001. 

Since we know that 𝐺 = [𝐼𝑘 : 𝑃], it results that 𝑃 = [

1
1

1
1

1
0

1
0

0
1

1
1

] and 𝑃𝑡 = [
1 1 1 0
1
1

1 0 1
0 1 1

]. 

The parity check matrix is given by 𝐻 = [𝑃𝑡: 𝐼𝑛−𝑘]. 
Since we know that number of message bit is 𝑘 = 4 and the length of codeword is 𝑛 = 7, it result 

that 𝑛 − 𝑘 = 7 − 4 = 3. 

So, 𝐻 = [
1 1 1 0 : 1 0 0
1
1

1
0

0
1

1
1

:
:

0
0

1
0

0
1
] and 𝐻𝑡 =

[
 
 
 
 
 
 
1 1 1
1
1
0
1
0
0

1
0
1
0
1
0

0
1
1
0
0
1]
 
 
 
 
 
 

 . 

First, we’ll check if C is valid and for that we need the calculation of C. 

Since number of message bit is 𝑘 = 4, we have 24 combination of codeword that are possible. 

𝐶 = [1 0 1 1] ⋅ [

1
0

0
0

0
0

0
0

:
:

1
1

1
1

1
0

0
0

0
0

1
0

0
1

:
:

1
0

0
1

1
1

] = ⌈1 0 1 1 0 0 1⌉. 

Let’s verify if 𝐶 ⋅ 𝐻𝑡 = 0. 

𝐶 ⋅ 𝐻𝑡 = ⌈1 0 1 1 0 0 1⌉ ⋅

[
 
 
 
 
 
 
1 1 1
1
1
0
1
0
0

1
0
1
0
1
0

0
1
1
0
0
1]
 
 
 
 
 
 

= [0 0 0 ]. 

So, C is a valid codeword. 

For the calculation of error syndrome S, we have 𝑆 = 𝑅 ⋅ 𝐻𝑡 , where 𝑅 = 1001001. 

𝑆 = [1 0 0 1 0 0 1] ⋅

[
 
 
 
 
 
 
1 1 1
1
1
0
1
0
0

1
0
1
0
1
0

0
1
1
0
0
1]
 
 
 
 
 
 

= [1 0 1]. 

It means that third bit from the received codeword will have error. 

So, the error vector is 𝐸 = 0010000. 

We can verify if the error vector is correct by the relation 𝐶 = 𝑅 + 𝐸. 

𝐶 = 1001001 + 0010000 = 1011001. 
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