
 

 

        MBNA Publishing House Constanta 2022 

  
  
 

doi: 10.21279/2457-144X-22-008    
SEA-CONF© 2022. This work is licensed under the CC BY-NC-SA 4.0 License 

 

 

 

Proceedings of the International Scientific Conference 

SEA-CONF  

SEA-CONF PAPER • OPEN ACCESS 

 

 

Automatic determination of all Hamiltonian cycles in 

acompletely undirected graph 
To cite this article: P. Vasiliu,  Proceedings of the International Scientific Conference SEA-CONF 2022, 

pg. 67-72.  

 

 

Available online at www.anmb.ro 

 

 

ISSN: 2457-144X; ISSN-L: 2457-144X 

 

http://www.anmb.ro/


 

 

 

 

 

 

Automatic determination of all Hamiltonian cycles in a 

completely undirected graph 

Paul Vasiliu1 

1 “Mircea cel Bătrân” Naval Academy, Constanţa, România  

E-mail: 1 paul.vasiliu@anmb.ro 

Abstract. The Hamiltonian cycles in a completely undirected graph have applicability in 

various fields, among which we mention: computer networks, transportation, logistics, 

economy. In this paper the author presents an algorithm and a program written in the C ++ 

language for the automatic determination of all Hamiltonian cycles in a completely undirected 

graph with 𝑛 ≥ 3 vertices. 

1.  The Hamiltonian cycle in a completely undirected graph 

Let the graph 𝐺 = (𝑋, 𝑈) be completely undirected with 𝑛 vertices.  

A cycle is defined as simple chain in which the first vertex coincides with the last vertex. An 

elementary cycle is defined as a cycle in which the vertices are distinct. 

The length of a cycle is equal to the number of edges of the cycle. The minimum length of a cycle 

is equal to 3.  

An elementary cycle that contains all the vertices of a graph is called a Hamiltonian cycle. 

An undirected graph that has a Hamiltonian cycle is called a Hamiltonian graph. 

The problem of determining Hamiltonian cycles is also known as the traveler's problem. The issue 

of the travel agent is one of the most important issues in the field combinatorial optimization. This 

problem consists in calculating a turn in a weighted graph (ie a cycle that visits each node exactly 

once), so the sum of the weights of the edges in this circuit to be minimal.  

The problem of the traveling salesman is known to be NP-strong, which means that none currently 

known algorithm does not find an optimal circuit in polynomial time. 

Given a set of markings on a hardware board and the distance between each possible pair, the 

traveler's problem is to find the best possible way to visit all the markings (when we will make the 

holes on the board) and return to the point of departure that minimized travel costs (given the distance 

between the holes). 

2.  Generating Hamiltonian cycles in a completely undirected graph. Algorithm 

Let’s consider the completely undirected graph 𝐺 = (𝑋, 𝑈) with 𝑛 vertices, 𝑛 ≥ 3, where 𝑋 is the set 

of vertices, 𝑋 = {1,2, ⋯ , 𝑛} and 𝑈 the set of edges.  

To determine all Hamiltonian cycles we start from the Hamiltonian cycle formed by the first three 

vertices: (1 2 3 1). 

By constructing the cycles formed by the first four vertices by inserting vertex 4 into the 

Hamiltonian cycle formed by the first three vertices, in all possible ways, are obtained three 

Hamiltonian cycles with four vertices: (1 4 2 3 1), (1 2 4 3 1) and (1 2 3 4 1). 

mailto:paul.vasiliu@anmb.ro


 

 

 

 

 

 

The vertex 5 is then inserted into each of the four-pointed Hamiltonian cycles and the five-pointed 

Hamiltonian cycles are obtained. 

Insert vertex 5 into the Hamiltonian cycle (1 4 2 3 1) in four ways and obtain the Hamiltonian 

cycles: (1 5 4 2 3 1), (1 4 5 2 3 1), (1 4 2 5 3 1) and (1 4 2 3 5 1). 

Insert vertex 5 into the Hamiltonian cycle (1 2 4 3 1) in four ways and obtain the Hamiltonian 

cycles: (1 5 2 4 3 1), (1 2 5 4 3 1), (1 2 4 5 3 1) and (1 2 4 3 5 1).  

Insert vertex 5 into the Hamiltonian cycle (1 2 3 4 1) in four ways and obtain the Hamiltonian 

cycles: (1 5 2 3 4 1), (1 2 5 3 4 1), (1 2 3 5 4 1) and (1 2 3 4 5 1). 

Do the same with the vertices 6, 7, ⋯ , 𝑛.  

We will determine the number of Hamiltonian cycles with 𝑛 ≥ 3 vertices. 

Let 𝐶𝑛  be the number of Hamiltonian cycles of the completely undirected graph 𝐺 = (𝑋, 𝑈) with 𝑛 

vertices, 𝑛 ≥ 3.  

Because 𝑛 vertices Hamiltonian cycles are obtained from 𝑛 − 1 vertices Hamiltonian cycles by 

inserting the 𝑛 vertices in (𝑛 − 1) ways and the number of 𝑛 − 1 vertices Hamiltonian cycles is equal 

to 𝐶𝑛−1 recurrence: 

𝐶𝑛 = {
(𝑛 − 1) ∙ 𝐶𝑛−1 𝑝𝑒𝑛𝑡𝑟𝑢 𝑛 ≥ 4

1 𝑝𝑒𝑛𝑡𝑟𝑢 𝑛 = 3
. 

Using this recurrence relation, the equalities are obtained: 

𝐶4 = 3 ∙ 𝐶3  

𝐶5 = 4 ∙ 𝐶4  

……………….  

𝐶𝑛 = (𝑛 − 1) ∙ 𝐶𝑛−1  

By computing the product member by member of these relationships the following equality results/ 

is obtained: 

𝐶4 ∙ 𝐶5 ∙  ⋯ ∙ 𝐶𝑛−1 ∙ 𝐶𝑛 = 3 ∙ 4 ∙  ⋯ ∙ (𝑛 − 1) ∙ 𝐶3 ∙ 𝐶4 ∙ 𝐶5 ∙  ⋯ ∙ 𝐶𝑛−1  

Simplify non-zero factors 𝐶4, 𝐶5, ⋯ , 𝐶𝑛−1 and equality is obtained: 

𝐶𝑛 = 3 ∙ 4 ∙  ⋯ ∙ (𝑛 − 1) ∙ 𝐶3  

Since 𝐶3 = 1 and 3 ∙ 4 ∙  ⋯ ∙ (𝑛 − 1) =
(𝑛−1)!

2
 we obtain that 𝐶𝑛 =

(𝑛−1)!

2
. 

We have thus shown that the number of all Hamiltonian cycles of the completely undirected graph 

𝐺 = (𝑋, 𝑈) with 𝑛 vertices, 𝑛 ≥ 3  is equal to 
(𝑛−1)!

2
. 

We prove this result by using the mathematical induction method. 

For 𝑛 = 3  we obtain 𝐶3 =
(3−1)!

2
= 1, which is true. 

For 𝑛 = 4  we obtain 𝐶4 =
(4−1)!

2
= 3, which is true. 

For 𝑛 = 5  we obtain 𝐶5 =
(5−1)!

2
= 12, which is true. 

The verification of the induction hypothesis is thus complete. 

Let’s suppose that 𝐶𝑛 =
(𝑛−1)!

2
 and will prove that 𝐶𝑛+1 =

𝑛!

2
. 

Hamiltonian cycles with 𝑛 + 1   vertices are obtained from Hamiltonian cycles with 𝑛 vertices by 

inserting the vertex 𝑛 + 1  in 𝑛 modes in each of the 𝐶𝑛 =
(𝑛−1)!

2
 Hamiltonian cycles with 𝑛 vertices. 

It results that the number of Hamiltonian cycles with 𝑛 + 1  vertices is equal to 

𝑛 ∙ 𝐶𝑛 = 𝑛 ∙
(𝑛−1)!

2
=

𝑛!

2
  and therefore 𝐶𝑛+1 =

𝑛!

2
. 

According to the principle of mathematical induction it results that: 𝐶𝑛 =
(𝑛−1)!

2
  for any 𝑛 ≥ 3. 

It can be observed that the set of Hamiltonian cycles of the completely undirected graph 𝐺 =
(𝑋, 𝑈) with 𝑛 vertices, 𝑛 ≥ 3, excluding the last vertex that coincides with the first vertex of each 

cycle, is a subset of the set of permutations of 𝑛 objects. 

By using this observation, the algorithm for generating the set of permutations of 𝑛 objects can be 

used to generate Hamiltonian cycles. 



 

 

 

 

 

 

For this purpose, we used the backtracking method to generate permutations of 𝑛 objects and we 

kept those permutations that coincide with the Hamiltonian cycles. 

3.  Implementation in the C++ language 

The program, written in the C ++ language, generates all Hamiltonian cycles from a completely 

unoriented graph with 𝑛 vertices. The program writes all these cycles are written to a text file. 

 

// Generate Hamiltonian cycles in a completely undirected graph with n nodes 

 

#include <iostream> 

#include <fstream> 

 

using namespace std; 

 

// Function for writing solution 

void writesol(int n, int *x, int &nrsol) 

{ 

 int i; 

 nrsol++; 

 cout<<endl; 

 cout<<" Cycle number "<<nrsol<<"     \t"; 

 x[n]=1; 

 for(i=0; i<n; i++) 

 cout<<" "<<x[i]; 

 cout<<endl<<endl; 

} 

 

// Function for writing file 

void writef(char *namef,int n,int *v, int nrsol) 

{ 

  

 int i; 

 ofstream f(namef,ios::app); 

 f<<" Cycle "<<nrsol<<"\t     "; 

 for(i=0;i<n;i++) 

 f<<v[i]<<" "; 

 f<<endl; 

 f.close(); 

} 

 

// Function for uniqueness test 

int equal(int *x, int n) 

{ 

 int i,j,f=0; 

 for(i=0;i<n;i++) 

 for(j=i+1;j<n;j++) 

 if(x[i]==x[j]) 

 f++; 

 if(f==0) 

 return 1; 

 else 



 

 

 

 

 

 

 return 0; 

} 

 

// Continuous generation test function 

int cont(int *x, int k) 

{ 

 int i; 

 for(i=0;i<k;i++) 

 if(x[i]==x[k] || x[0] != 1 || (x[i]>=x[k] && x[i]==3)) 

 return 0; 

 return 1; 

} 

 

// Function for insert vertice val 

void insert(int n, int *v, int poz, int val) 

{ 

 int i; 

 for(i=n;i>=poz;i--) 

 v[i+1]=v[i]; 

 v[poz]=val; 

 v[n]=1; 

  

} 

 

// Backtracking function 

void back(int n, int k, int *x, int &nrsol, char *namef) 

{ 

 int i,j,p; 

 if(k==n) 

 { 

 for(j=1;j<n;j++) 

 { 

 insert(n,x,j,n); 

 if (equal(x,n)==1) 

 { 

 writesol(n+1,x,nrsol); 

 writef(namef,n+1,x,nrsol); 

 } 

 for(p=j;p<=n;p++) 

 x[p]=x[p+1]; 

 } 

 } 

 else 

 for(i=1;i<=n;i++) 

 { 

  x[k]=i; 

  if(cont(x,k)==1) 

  back(n,k+1,x,nrsol,namef); 

 } 

} 

 



 

 

 

 

 

 

// Main function 

int main() 

{ 

 int n,i, x[500], nrsol=0; 

 char namef[20]; 

 cout<<" Number of vertices = "; 

 cin>>n; 

 cout<<" File name : "; 

 cin>>namef; 

 back(n,0,x,nrsol,namef); 

 cout<<" Number of Hamiltonian cycles "<<nrsol<<endl; 

} 

 

The results generated by the program for n = 4 are: 

 

Number of vertices = 4 

File name : f.dat 

Cycle number 1          1 4 2 3 1 

Cycle number 2          1 2 4 3 1 

Cycle number 3          1 2 3 4 1 

 

 Number of Hamiltonian cycles 3 

 

The results generated by the program for n = 5 are: 

 

Number of vertices = 5 

File name : f.dat 

Cycle number 1          1 5 2 3 4 1 

Cycle number 2          1 2 5 3 4 1 

Cycle number 3          1 2 3 5 4 1 

Cycle number 4          1 2 3 4 5 1 

Cycle number 5          1 5 2 4 3 1 

Cycle number 6          1 2 5 4 3 1 

Cycle number 7          1 2 4 5 3 1 

Cycle number 8          1 2 4 3 5 1 

Cycle number 9          1 5 4 2 3 1 

Cycle number 10         1 4 5 2 3 1 

Cycle number 11         1 4 2 5 3 1 

Cycle number 12         1 4 2 3 5 1 

 

Number of Hamiltonian cycles 12 

4.  Conclusions and further developments 

In this paper we have presented an algorithm and a program written in the C ++ programming 

language for generating all Hamiltonian cycles of a completely undirected graph. The program can be 

used for teaching purposes and in practical applications in various fields.  

An important application of the travel commissioner's problem is that of making printed circuit 

boards. 

The holes for mounting microprocessors, microchips and other electronic components are made 

automatically with drilling machines. 

The holes have different diameters and require drills with such diameters. 



 

 

 

 

 

 

The optimization of the drill change process is based on the problem of determining the 

Hamiltonian cycles in a completely undirected graph, a problem of the traveler. 

The author intends to develop algorithms for optimizing the perforating process of printed plates 

based on the results of this paper. 

References 

[1] Horowitz E., Sahni S. - Fundamentals of Computer Algoritms, Computer Science Press, 1985. 

[2] Knuth E., D. – Tratat de programarea calculatoarelor, vol. 1, Algoritmi fundamentali, Editura 

Tehnică, Bucureşti, 1974. 

[3] Knuth E., D. -  Tratat de programarea calculatoarelor, vol. 2, Sortare şi căutare, Editura Tehnică, 

Bucureşti, 1976. 

[4] Stroustrup B.-  The C++ Programming Laguage Ed.Addison – Wesley 1996. 


