

 MBNA Publishing House Constanta 2021

doi: 10.21279/2457-144X-21-022
SEA-CONF© 2021. This work is licensed under the CC BY-NC-SA 4.0 License

Proceedings of the International Scientific Conference

SEA-CONF

SEA-CONF PAPER • OPEN ACCESS

Searchable Symmetric Encryption for Cloud Software

in Maritime Industry
To cite this article: Marius Iulian MIHAILESCU, Stefania Loredana NITA and Ciprian RACUCIU,

Proceedings of the International Scientific Conference SEA-CONF 2021, pg.165-176.

Available online at www.anmb.ro

ISSN: 2457-144X; ISSN-L: 2457-144X

http://www.anmb.ro/

Searchable Symmetric Encryption for Cloud Software in

Maritime Industry

Marius Iulian Mihailescu1, Stefania Loredana Nita2, Ciprian Racuciu3

1Spiru Haret University,

Scientific Research Center in Mathematics and Computer Science
2Instiute for Computers, Integrated Systems Department
3Computer Science Department, Titu Maiorescu University

m.mihailescu.mi@spiruharet.ro

Abstract. Due to technological advance of software applications in cloud computing, maritime

software industry has a special spot. Starting with 2020, because of the cybersecurity threats

and the attacks that took place (e.g., FireEye, SolarWinds), it is very important to redesign and

adopt a critical thinking about data privacy, to implement serious security policy and develop

high secure software code. The importance of software reliability and secure communication

between shore and sea represents an important challenge on which we need to focus. This

article comes as an encouragement and its aim is to provide an approach for providing a certain

level of confidence of the data that are exchanged between shore-side and sea (e.g., documents,

messages). The approach is defined by a searchable symmetric encryption scheme that will

allows a party to outsource the documents to another party in a private and dedicated manner.

In this way the users will have the possibility to access their data by searching directly over the

encrypted data using specific keywords.

1. Introduction

Searchable Encryption (𝑆𝐸) a unique mechanism for allowing encrypted data to be outsourced to an

untrusted and potential third-party service provider [26], giving to the user the possibility to search

directly over the data that are encrypted [30]. SE represents a particular case of homomorphic

encryption [40].

Let’s imagine the following general scenario [26], we assume that we have a data owner (𝐷𝑂) that

has some documents 𝐷 = {𝑑1, … , 𝑑𝑖} and he wants to store them on a server (𝑆), but in the same time

there is another user, let’s call him 𝐵𝑜𝑏, that he wants to access those documents using a query. If we

want to achieve this goal, the 𝐷𝑂 has to encrypt the documents using 𝐵𝑜𝑏′𝑠 public key and then the

𝐷𝑂 will store those documents on the server. When 𝐵𝑜𝑏 wants to access some documents, he will

initiate a query (𝑞) based on a keyword (𝑘𝑤) or keywords 𝐾 = {𝑘𝑤1, … , 𝑘𝑤𝑛}, he will generate a

value using a function called trapdoor (𝑇) based on his 𝑘𝑤 or 𝐾 and his private key (𝑝𝑟𝑣𝑘). Once

𝐵𝑜𝑏 will compute the 𝑇 function, he will be submitted to the server where there is an

algorithm/service that will perform the searching operation and the output will be represented by the

documents which meet the criteria given by 𝐵𝑜𝑏.

Another scenario, which is more practical [26], can be seen or imagined in a company that wish to

develop a software solution that is based on social security numbers (SSNs) that are obtained from the

clients. One of the best practice’s states that an SSN should ne encrypted if it is not involved in a data

mailto:m.mihailescu.mi@spiruharet.ro

process. At the same time, the employees will have access to the client’s SSN’s when they will search

for a client account – a typical case of plaintext. A normal question is being raised: what will happen if

the employees will not be able to see the SSN in plaintext? This is the point where a searchable

encryption scheme comes and provides solution for the current situation and solve the mystery.

Based on the above scenarios, we can say that 𝑆𝐸 [3] represents a mechanism that gives the

possibility for a user to initiate queries and to search on encrypted content for a specific

data/document(s). 𝑆𝐸 is also a very sensitive mechanism, a wrong implementation or designing

process of the algorithms, could be quite devasting for a complex infrastructure (e.g., cloud computing

[32], big data [33] etc.). Also, 𝑆𝐸 has a large area of domains with complex systems and

infrastructures in which it can be applied with success, such as healthcare, physics, meteorology,

agriculture, IoT etc.

The main objective of our work is to provide a practical approach that it can be used to implement

searchable encryption for maritime software application in complex infrastructure, such as cloud

computing.

The paper structure. The paper is divided in five sections as follows:

• Section 1 – Introduction. The section provides a short introduction for searchable

encryption and presents two scenarios where searchable encryption can be applied

practically.

• Section 2 – Searchable encryption components. In this section the main components of a

searchable encryption are presented, a set of questions for implementation are presented

with the goal to make the process of implementation much clearer. There are two sub-

sections, 2.1. Entities that describe the role of each entity/participant in the searchable

encryption scheme, and 2.2. Types that present two categories of the searchable encryption

techniques (SSE – searchable symmetric encryption and PEKS – public encryption with

keywords [7-10]).

• Section 3 – Basic example of implementation. The section describes a simple example of

implementation, providing an intuitive source code of how an implementation of searching

and querying operations should look like.

• Section 4 – Proposed idea. The section will discuss in depth the implementation of several

algorithms from a searchable encryption scheme.

• Section 5 – Conclusions. The section summarizes the main achievements, what challenges

were experienced and how they were fixed.

2. Searchable encryption components

We will use the term entities to describe the persons (e.g., Data Owner, Data User, Server etc.).

A 𝑆𝐸 scheme can be characterized by two components: entities and algorithms. Each of these

components have a precise role and objective. In Section 2.1 we will discuss about the entities, what

they represent and what is their main goal/objective in a 𝑆𝐸 scheme.

2.1. Entities

Starting from the implementation process of a software application or system, there are couple of

aspects that are recommended to be clarified before the implementation should start. This being said,

the following questions are valid:

• Who will operate the application?

Answer in accordance with a searchable encryption scheme: Data User, Data Owner.

• Who will provide maintenance?

Answer in accordance with a searchable encryption scheme: Data Owner, Administrator.

• What types of data are we dealing with and who can access them?

Answer in accordance with a searchable encryption scheme: encrypted documents that

have a keyword (𝑘𝑤) or keywords (𝐾) attached. Also, the keywords are encrypted and

stored accordingly.

• Where the data will be stored?

Answer in accordance with a searchable encryption scheme: Server, Cloud environment

[2], Big Data [19], fog computing, edge computing [18, 20] etc.

• What security mechanisms should be addressed?

Answer in accordance with a searchable encryption scheme: searchable encryption (SE),

symmetric searchable encryption (SSE) or public encryption with keywords (PEKS).

• What infrastructure will be used for the entire software system (e.g., cloud computing, big

data, fog computing [38], edge computing etc.)?

Answer in accordance with a searchable encryption scheme: Any architecture that respects

the principles of a secure architecture and provides the proper security mechanisms that

will guarantee the confidentiality, integrity and authenticity of the data. A searchable

encryption scheme should be flexible, easy to adapt to the software applications and to the

types of data and data formats [36].

These questions surround the 𝑆𝐸 mechanism and the following entities are involved within the

entire process of implementation:

• Data Owner (DO). As we mentioned in the beginning, a 𝐷𝑂 has a set of 𝑛 documents, 𝑛 ∈
𝐷, where 𝐷 = {𝑑1, … , 𝑑𝑛}. Each document is described by a keyword (𝑘) or set of

keywords (𝐾). Before proceeding further with storing those documents on the server, the

𝐷𝑂 will encrypt the documents based on a cryptographic algorithm. We will consider 𝐷𝑂

as a trusted entity.

• Data User (DU). A data user represents a person that is authorized to launch the search

process based on queries (𝑄). This process will use a keyword or set of keywords and

generate a trapdoor value. The value will be used to search in the encrypted content. The

𝐷𝑈 will have the possibility to decrypt the received documents based on the private key.

• Server (S). The role of the server is to store the encrypted data and to execute the

algorithms for searching using the value from the trapdoor. The server represents a critical

point, but for our work we will consider it as a semi-trusted or honest-but-curious. This

means that it will execute the search algorithms as instructed and provide an analyze of the

data that was given to it.

A very good observation that can be mentioned at this point is based on the fact that the 𝐷𝑂 can be

considered a 𝐷𝑈.

2.2. Types

Generally speaking, there are two important categories of searchable encryption schemes that are

currently having an applied potential in real case scenarios: symmetric searchable encryption (SSE)

[21] and public encryption with keywords (PEKS) [21].

The first idea of 𝑆𝐸 scheme for cloud environments was proposed by Song et al. in 2000 [5], their

contribution representing a pioneering work in the field of provably secure SE. In [26], Bosch et al.

provide a survey about provably secure searchable encryption based on the two main SE techniques:

SSE and PEKS. Their survey is focused on making a comparison between SE security, efficiency and

functionality. It is easy to follow, being written in a language that makes it easy to understand with a

very good foundation for security background. A SE are based on different techniques. The techniques

covered by their survey are: Searchable Symmetric Encryption (SSE), Public Key with Keyword

Search (PEKS), Identity-based Encryption (IBE), Hidden Vector Encryption (HVE), Predicate

Encryption (PE), and Inner Product Encryption (IPE).

Another technique that it seems to be powerful enough and has potential in real applications is

represent by Multi-Keyword Rank Searchable Encryption (MRSE) [41].

In 2019, Su et al. [1] propose a verifiable multi-key searchable encryption (VMKSE) scheme for

cloud computing based on multi-key searchable encryption (MKSE). Their scheme is based on fine-

grained data sharing [4] for the authorized users. The main contributions are promising, as the scheme

is based on Garbled Bloom Filter and they define a security model with a strong security and

efficiency analysis for their proposed scheme, making their idea gaining trust and to give a chance to

be implemented in a real environment.

In a symmetric searchable encryption scheme (SSE) the key used for encryption is used as well as

for decryption, being carried for other algorithms from the scheme. In public encryption schemes with

keyword search (PEKS), two cryptographic keys are used, public key (𝑝𝑢𝑏𝑘) and private key (𝑝𝑟𝑣𝑘).

Next, we will continue with the general steps (algorithms) of a symmetric searchable encryption

(SSE) scheme and we will provide a short analysis of the main goals of each of the algorithms.

Usually, a 𝑆𝐸 has four main algorithms and depends on the situations (complexity, complex processes,

functionalities, complex architectures etc.) extra- algorithms can be added. This being said, the main

four algorithms that should be included in such scheme, are:

1. KeyGeneration. The algorithm is invoked and run by the DO. To call this algorithm, the

DO need to provide the security parameter 𝜔. Based on 𝜔, the algorithm will output the

private key (𝑝𝑟𝑣𝑘𝑒𝑦).

2. BuildIndex. The algorithm is creating an index structure [6] and is being run by the 𝐷𝑂.

One of the input parameters is represented by the secret key (𝑠𝑘) and the set of documents

𝐷. The output will be an index structure 𝐼.

3. Trapdoor. This algorithm is run by 𝐷𝑈. Based on the 𝑘𝑤, the algorithm will generate a

trapdoor value. Using the trapdoor value, the algorithm will proceed with searching

process. The trapdoor function will need for the searching process the 𝑠𝑘. The output is

represented by a trapdoor value that usually is noted as 𝑇𝑘𝑤.

4. Search. The algorithm usually is performed by the server. The input value for the algorithm

is represented by the 𝑇𝑘𝑤 and 𝐼. An important observation is that the search algorithm does

not make a simple matching of 𝑇𝑘𝑤 and 𝐼.

3. Basic example of implementation

Even that searchable encryption has an amazing potential, theoretical and practical, sometimes is quite

difficult to provide an implementation from scratch in regular software applications with respect for

improving the quality of the software [35, 37]. This is happening due to the roughness of the

algorithms – if we have a wrong implementation of the algorithms, then we will have a wrong

encryption, leading in the end to a very poor security and many resources that are consumed.

Depends on what is the goal of what we want to protect and the infrastructure in which the software

application will be deployed, the practical implementations will be different. There are couple of

practical implementations, such as Crypteron1 [14] or CryptDB2.

Most of the practical implementations, such as CryptDB for example are vulnerable to attacks on

the database server, but also on the encrypted query and encrypted results. In case of man-in-the-

middle attacks or exploiting the vulnerabilities of a server using dedicated tools (e.g., Metasploit, Kali

Linux etc.), the results will not be so promising, and this will be shown in a future contribution. An

interesting contribution for insider threats based on natural language processing and personality

profiles is discussed in [31]. Insider threats should be treated with a maximum responsibility by the

institutions as an untrained employee can cause security breaches and data leakages.

In the following example, we will show how we can implement a searchable function for accessing

some documents related in a software application for maritime industry.

Below, in Code Listing 3.1 we can see an example of practical implementation for defining a query

and receiving the messages, the implementation is done using C# 8.0 programming language [39].

These two functions represent Step 4 - Search from the general algorithms mentioned above. The

implementation shown as an example is on the user side software application. The 𝐷𝑈 is the one who

initiate the below implementation.

1 Crypteron, https://www.crypteron.com/
2 CryptDB, http://css.csail.mit.edu/cryptdb/

https://www.crypteron.com/
http://css.csail.mit.edu/cryptdb/

Code Listing 3.1. A simple implementation for searchable encryption Search algorithm

 public class MaritimeDocuments

 {

 public int DocumentID {get; set ;}

 [Secure]

 public string Keyword {get; set;}

 [Secure(Opt.Search)]

 public string query_based_on_keyword =

 SE_SecureSearch.GetPrefix(“trapdoor value”);

 var results = connection_database.MaritimeDocuments

 .Where(p =>

 .DocumentKeywords.StartsWith(query_based_on_keyword));

 }

As we can observe from Code Listing 3.1, at a first sight it is quite simple to give an

implementation for searching process, but if we pay attention to the implementation we can observe as

well how easy is attack such implementation using software obfuscation attacks and techniques []. The

main lines on which we need to focus are and .

In Line we define a string variable that represents the query using a specific keyword (𝑘𝑤) or

set of keywords (𝐾), and by using GetPrefix() with the trapdoor value we will be able to get the first

records that meets the criteria (trapdoor value). The trapdoor value is computed as we shown in

Section 2. In Line we define an object that based on the content stored in

query_based_on_keyword string variable from Line it will return the documents that match the

query. In Line , Opt.Search option will help developers to enable the searchable property for

DocumentKeywords as shown in Line . Before the search is being initiated, the keyword from the

query is being processed by SE_SecureSearch.GetPrefix from Line .

4. Proposed idea

In the following example, we have brought into discussion an idea of applied searchable encryption

for a software maritime application (web or desktop) that can be adjusted and properly configured for

a cloud architecture.

As we mentioned before, it is very important to be aware about the participants into the system.

Next example will show and demonstrate theoretically and practically how strong as security [11-13],

powerful as computations, and complex as implementation a searchable encryption can be.

The following scenario will be used to design the algorithms (which represents the theoretical

background) and based on the algorithms we will provide a sketch for the implementation. The

implementation sketch can be adjusted depends on the requirements of the maritime software

application/system.

The scenario is based on the participants that interacts with the software system and infrastructure,

as follows:

• the 𝐷𝑈 is in the possession of a set of documents 𝐷, making sure that the system is ready to

generate the required keys, to provide encryption for them and send them to the cloud in

order to store them;

• the 𝐷𝑂 will have the chance and possibility to submit the queries for searching process to

cloud [15, 16, 17];

• the cloud infrastructure [34] will store the documents as encrypted and it will call the

search algorithm;

The typical searchable encryption scheme proposed for a maritime software system contains a

number of six algorithms, as follows:

1. 𝐾𝑒𝑦𝑔𝑒𝑛(𝜔) → (𝑝𝑢𝑏𝑘𝑒𝑦 , 𝑝𝑟𝑣𝑘𝑒𝑦): based on the security parameter (𝜔) two keys are

generated, public key (𝑝𝑢𝑏𝑘𝑒𝑦) and private key (𝑝𝑟𝑣𝑘𝑒𝑦).

2. 𝐸(𝐷𝑖, 𝑝𝑢𝑏𝑘𝑒𝑦) → 𝐶𝑖: the encryption algorithm will encrypt the set of documents using the

𝑝𝑢𝑏𝑘𝑒𝑦 and it will output a set of encrypted documents (𝐶𝑖).

3. 𝐵𝐼(𝐷𝑖, 𝑘𝑤, 𝑝𝑢𝑏𝑘𝑒𝑦) → 𝐼: based on a certain document 𝐷𝑖, the keyword (𝑘𝑤) associated

with the document and 𝑝𝑢𝑏𝑘𝑒𝑦, the algorithm will output the index structure 𝐼 that

represents the association link between the document(s) and keyword(s).

4. 𝑇(𝑘𝑤, 𝑝𝑟𝑣𝑘𝑒𝑦) → 𝑡𝑘𝑤: the trapdoor algorithm receives as input two parameters, 𝑘𝑤 and

𝑝𝑟𝑣_𝑘𝑒𝑦, based on which he will output the trapdoor value (𝑡𝑘𝑤).

5. 𝑆(𝑡𝑘𝑤, 𝑝𝑢𝑏𝑘𝑒𝑦 , 𝐼) → 𝐶: the searching algorithm receives as input the 𝑡𝑘𝑤, 𝑝𝑢𝑏𝑘𝑒𝑦 and 𝐼.

The output of the algorithm is represented by the encrypted documents 𝐶 = {𝐶𝑖1
, … , 𝐶𝑖𝑘𝑤

}

with their 𝑘𝑤 or 𝐾 associated.

6. 𝐷(𝐶, 𝑝𝑟𝑣𝑘𝑒𝑦) → 𝐷: the role of the algorithm is to provide the decryption of the document

or set of documents based on the 𝐶 and 𝑝𝑟𝑣𝑘𝑒𝑦. The output has the following

representation 𝐷 = {𝐷𝑖1
, … , 𝐷𝑖𝑤

} ⊂ 𝑆, 𝐷 being the decrypted documents.

Before proceeding further with the implementation of the algorithms, a set of guidelines should be

taken into consideration before doing so. Those guidelines are:

• The software architecture(s) (services etc.) and hardware infrastructure (server, database

etc.);

• The hardware infrastructure and how it is represented for the maritime software application

and how the security and cryptographic mechanisms are used [35-38].

• Providing a separate and independent implementation of the algorithms with respect for

architecture, in such way that each of the algorithms from the searchable encryption

scheme.

In the followings we will present the main important points of the implementation approach. For

more details about our approach, a GitHub3 repository is available. The implementation is purely

indicative, representing a starting point for future improvements, quite easy to be adjusted for other

systems as well.

In Code Listing 4.1. we will give an implementation for 𝐾𝑒𝑦𝑔𝑒𝑛(𝜔) → (𝑝𝑢𝑏𝑘𝑒𝑦 , 𝑝𝑟𝑣𝑘𝑒𝑦)

algorithm, which is the first step of the proposed searchable encryption scheme.

Code Listing 4.1. A simple implementation for searchable encryption key generation algorithm

public class KeyGeneration {

 //** Step 1-the algorithm from KeyGeneration step (algorithm)

 //** are runned and invoked by the data owner

//** the function will return the policy,

//** as a content or file

public string GetPolicy(IServiceCollection policyService) {

 policyService.AddAuthorization(policyChoices => {

 policyChoices.AddPolicy("Policy content", policy

=>policy.Requirements.Add(new

UserPolicy()));

 });

 policyContent = policyChoices.ToString();

3 SE_Sketch GitHub Repository, https://github.com/mmihailescu-hub/SE_Sketch

https://github.com/mmihailescu-hub/SE_Sketch

}

//** getting server identity can be tricky and it has

//** different meanings, such as the name of computer, IP etc.

//** For the current example we will use the hardware ID

public string GetServerIdentity() { }

//** class constructor

public KeyGeneration(){}

//** generation of secret key, server key and public parameters

//** “#” represents the separator

public string ReturnParameters() {

 StringBuilder sbParameters = new StringBuilder();

 sbParameters.Append(ownerSecretKey + “#” +

serverKey + “#” +);

publicParameters); }

}

Let’s continue with the implementation and look over the third algorithm of the search encryption,

which is represented by building the index 𝐵𝐼(𝐷𝑖, 𝑘𝑤, 𝑝𝑢𝑏𝑘𝑒𝑦) → 𝐼 and illustrated in Code Listing 4.2.

For this work we skipped the second algorithm that is represented by the encryption of the documents

due to the fact that it does not bring any genuine to the implementation as most of the cryptographic

algorithms are known.

Code Listing 4.2. A simple implementation for searchable encryption build index algorithm

public class BuildIndex

{

 //** Step 2

 //** the algorithm from BuildIndex step (algorithm)

 //** are runned and invoked by the data owner

 //** constructor of the class

public void BuildIndex(){}

//** the function centralize the build index parameters

//** after their initialization and processing

public void UseBuildIndexParameters()

{

LinkedList descriptionDataSet =

new LinkedList();

string ownerPrivateKey = string.Empty();

string outputIndex = string.Empty();

}

//** simulation of getting the data set and their

//** descriptions

public LinkedList GetDataSet() {

 for(int i=0; i<dataSet.Length; i++)

{

 LinkedList ll = new LinkedList();

 ll.Items.Add(dataSet[i],description[i]);

 }

}

//** getting the private of the owner

public string ownerPrivateKey() {

 string privateKey = string.Empty();

 //** get the private key and work with it arround

 return privateKey;

}

//** get the index

public string Index() {

 string index = string.Empy();

 //** implement the query for getting

 //** or generating the index

 return index;

}

}

One of the most important and vital steps of the discussed searchable encryption scheme is

represented by the fifth algorithm which consists in the search procedure - 𝑆(𝑡𝑘𝑤 , 𝑝𝑢𝑏𝑘𝑒𝑦, 𝐼) → 𝐶 (see

Code Listing 4.3).

Code Listing 4.3. A simple implementation for searchable encryption key generation algorithm

public class Search

{

 //** Step 5

 //** the algorithm from Search step (algorithm)

 //** are runned and invoked by the server

 //** the constructor of the Search class

 public void Search() {}

 public string SearchQuery() {

 string query = string.Empty();

 //** take the search query

 return query;

}

public string Index() {

 string index = string.Empty();

 //** take the search query

 return index;

}

public string ReturnResult() {

 string result = string.Empty();

 string setOfIdentifiers = string.Empty();

 //** based on the search query and index,

 //** get the set identifiers of the data items

 setOfIdentifier = “query for identifiers”;

 //** build the result. “#” is the separator for

 //** illustration purpose only

 result = SearchQuery + “#” + Index;

 return result;

}

}

5. Conclusions

The current work represents a practical and unique approach for searchable encryption and it can be

used in real environments, such as maritime software applications.

The main idea of our work has been focused on providing a unique encryption mechanism for

documents, that are exchanged between different users of a maritime software infrastructure using

cloud computing as environment. Currently, the scheme has been tested on a virtual machine, such as

VMware.

The main challenges that we have experienced were based on huge amount of time dedicated for

processing multiple queries (~200 queries per second). These situations were remediated by using a

proper load balancing mechanism. For example, if we will implement the scheme for other fields, such

as biology or health, the queries will suffer significant delays in being processed. In physics, where the

amount of data that are resulting as output from different experiments [22-24] the processing time is

exponentially increasing.

As for future research directions, we have a list of tasks, such as improving the execution time

(make it faster); providing complex encryption mechanism for documents that are stored in complex

infrastructures; providing support for IoT environments and devices [25]; storing and securing

complex media files and guaranteeing extra security mechanisms [27, 28]; and providing completely

anonymous authentication mechanisms for users and for different systems, such as e-passports or e-

lottery systems [29].

References

[1] Y. Su, J. Wang, Y. Wang and M. Miao, "Efficient Verifiable Multi-Key Searchable Encryption

in Cloud Computing," in IEEE Access, vol. 7, pp. 141352-141362, 2019. DOI:

10.1109/ACCESS.2019.2943971.

[2] Yanjiang Yang, Haiyan Zhu, Haibing Lu, Jian Weng, Youcheng Zhang, Kim-Kwang Raymond

Choo, Cloud based data sharing with fine-grained proxy re-encryption, Pervasive and Mobile

Computing, Volume 28, 2016, Pages 122-134, ISSN 1574-1192. DOI:

10.1016/j.pmcj.2015.06.017.

[3] Wang, Y., Wang, J. & Chen, X. Secure searchable encryption: a survey. J. Commun. Inf. Netw.

1, 52–65 (2016). DOI: 10.1007/BF03391580.

[4] J. Shao, R. Lu and X. Lin, "Fine-grained data sharing in cloud computing for mobile devices,"

2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China,

2015, pp. 2677-2685. DOI: 10.1109/INFOCOM.2015.7218659.

[5] Dawn Xiaoding Song, D. Wagner and A. Perrig, "Practical techniques for searches on encrypted

data," Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, Berkeley,

CA, USA, 2000, pp. 44-55. DOI: 10.1109/SECPRI.2000.848445.

[6] Goh, E. J. (2003). Secure indexes. IACR Cryptology ePrint Archive, 2003, 216.

[7] Boneh D., Di Crescenzo G., Ostrovsky R., Persiano G. (2004) Public Key Encryption with

Keyword Search. In: Cachin C., Camenisch J.L. (eds) Advances in Cryptology -

EUROCRYPT 2004. EUROCRYPT 2004. Lecture Notes in Computer Science, vol 3027.

Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-24676-3_30.

[8] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren and W. Lou, "Fuzzy Keyword Search over Encrypted

Data in Cloud Computing," 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA,

2010, pp. 1-5. DOI: 10.1109/INFCOM.2010.5462196.

[9] J. Bringer, H. Chabanne and B. Kindarji, "Error-Tolerant Searchable Encryption," 2009 IEEE

International Conference on Communications, Dresden, Germany, 2009, pp. 1-6. DOI:

10.1109/ICC.2009.5199004.

[10] Junzuo Lai, Xuhua Zhou, Robert Huijie Deng, Yingjiu Li, and Kefei Chen. 2013. Expressive

search on encrypted data. In Proceedings of the 8th ACM SIGSAC symposium on

Information, computer and communications security (ASIA CCS '13). Association for

Computing Machinery, New York, NY, USA, 243–252. DOI: 10.1145/2484313.2484345.

[11] Raphael Bost. 2016. ∑oφoς: Forward Secure Searchable Encryption. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security (CCS '16).

Association for Computing Machinery, New York, NY, USA, 1143–1154. DOI:

10.1145/2976749.2978303.

[12] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou, and Rasool Jalili.

2018. New Constructions for Forward and Backward Private Symmetric Searchable

Encryption. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security (CCS '18). Association for Computing Machinery, New York,

NY, USA, 1038–1055. DOI: 10.1145/3243734.3243833.

[13] Zuo C., Sun SF., Liu J.K., Shao J., Pieprzyk J. (2019) Dynamic Searchable Symmetric

Encryption with Forward and Stronger Backward Privacy. In: Sako K., Schneider S., Ryan

P. (eds) Computer Security – ESORICS 2019. ESORICS 2019. Lecture Notes in Computer

Science, vol 11736. Springer, Cham. DOI: 10.1007/978-3-030-29962-0_14.

[14] Crypteron Documentation, https://www.crypteron.com/docs/.

[15] C. Ma, Y. Gu and H. Li, "Practical Searchable Symmetric Encryption Supporting Conjunctive

Queries Without Keyword Pair Result Pattern Leakage," in IEEE Access, vol. 8, pp. 107510-

107526, 2020. DOI: 10.1109/ACCESS.2020.3001014.

[16] Fu, S., Zhang, Q., Jia, N. et al. A Privacy-preserving Fuzzy Search Scheme Supporting Logic

Query over Encrypted Cloud Data. Mobile Netw Appl (2020). DOI: 10.1007/s11036-019-

01493-3.

https://doi.org/10.1109/ACCESS.2019.2943971
https://doi.org/10.1016/j.pmcj.2015.06.017
https://doi.org/10.1007/BF03391580
https://doi.org/10.1109/INFOCOM.2015.7218659
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1109/INFCOM.2010.5462196
https://doi.org/10.1109/ICC.2009.5199004
https://doi.org/10.1145/2484313.2484345
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1007/978-3-030-29962-0_14
https://www.crypteron.com/docs/
https://doi.org/10.1109/ACCESS.2020.3001014
https://doi.org/10.1007/s11036-019-01493-3
https://doi.org/10.1007/s11036-019-01493-3

[17] Boneh D., Di Crescenzo G., Ostrovsky R., Persiano G. (2004) Public Key Encryption with

Keyword Search. In: Cachin C., Camenisch J.L. (eds) Advances in Cryptology -

EUROCRYPT 2004. EUROCRYPT 2004. Lecture Notes in Computer Science, vol 3027.

Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-24676-3_30.

[18] B. Ernest and J. Shiguang, "Privacy Enhancement Scheme (PES) in a Blockchain-Edge

Computing Environment," in IEEE Access, vol. 8, pp. 25863-25876, 2020. DOI:

10.1109/ACCESS.2020.2968621.

[19] N. S. Loredana, "On recommendation systems applied in big data," 2016 8th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, 2016, pp.

1-6. DOI: 10.1109/ECAI.2016.7861068

[20] M. Shahriar Rahman, A. Al Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto and G. Wang,

"Accountable Cross-Border Data Sharing Using Blockchain Under Relaxed Trust

Assumption," in IEEE Transactions on Engineering Management, vol. 67, no. 4, pp. 1476-

1486, Nov. 2020. DOI: 10.1109/TEM.2019.2960829.

[21] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. 2014. A Survey of Provably

Secure Searchable Encryption. ACM Comput. Surv. 47, 2, Article 18 (January 2015), 51

pages. DOI: 10.1145/2636328.

[22] V. Marascu, C. Stancu, V. Satulu, A. Bonciu, C. Grisolia, G. Dinescu, Material erosion and dust

formation during tungsten exposure to Hollow-Cathode and Microjet Discharges, APPLIED

SCIENCES-BASEL, Volume: 10, Issue: 19, Article Number: 6870, Published: OCT 2020.

DOI: 10.3390/APP10196870.

[23] V. Marascu, A. Lazea-Stoyanova, A. Bonciu, V. Satulu, G. Dinescu, Tungsten particles

fabrication by a microjet discharge, MATERIALS RESEARCH EXPRESS, Volume: 7,

Issue: 6, Article Number: 066509, Published: JUN 2020. DOI: 10.1088/2053-1591/AB955D.

[24] V. Marascu, A. Lazea-Stoyanova, C. Stancu, G. Dinescu, The influence of plasma operation

parameters on synthesis process of copper particles at atmospheric pressure, PLASMA

PROCESSES AND POLYMERS, Volume: 15, Issue: 1, Article Number: e1700091,

Published: JAN 2018. DOI: 10.1002/PPAP.201700091.

[25] Panda, P.K., Chattopadhyay, S. A secure mutual authentication protocol for IoT environment. J

Reliable Intell Environ 6, 79–94 (2020). DOI: 10.1007/s40860-020-00098-y.

[26] Mihailescu Marius Iulian, Nita Stefania Loredana, and Pau Valentin Corneliu. E-Learning

System Framework using Elliptic Curve Cryptography and Searchable Encryption. In

Proceedings of International Scientific Conference for e-Learning and Software for

Education, Volume 1, Pages: 545-552, 2020. DOI: 10.12753/2066-026X-20-071.

[27] Dăscălescu, A.C., Boriga, R.E. A novel fast chaos-based algorithm for generating random

permutations with high shift factor suitable for image scrambling. Nonlinear Dyn 74, 307–

318 (2013).DOI: 10.1007/s11071-013-0969-6.

[28] Radu Boriga, Ana Cristina Dăscălescu, Adrian-Viorel Diaconu, "A New One-Dimensional

Chaotic Map and Its Use in a Novel Real-Time Image Encryption Scheme", Advances in

Multimedia, vol. 2014, Article ID 409586, 15 pages, 2014. DOI: 10.1155/2014/409586.

[29] Florin Medeleanu, Ciprian Răcuciu, Madlena Nen, Zieduna Liepe & Narcis Florentin Antonie

(2019) Fair e-lottery system proposal based on anonymous signatures, Applied Economics,

51:27, 2921-2933, DOI: 10.1080/00036846.2018.1563671.

[30] Mihailescu, Marius Iulian, and Stefania Loredana Nita. Pro Cryptography and Cryptanalysis:

Creating Advanced Algorithms with C# and .NET. Apress, 2021. DOI: 10.1007/978-1-4842-

6367-9.

[31] S. Eftimie, R. Moinescu and C. Rǎcuciu, "Insider Threat Detection Using Natural Language

Processing and Personality Profiles," 2020 13th International Conference on

Communications (COMM), Bucharest, Romania, 2020, pp. 325-330, DOI:

10.1109/COMM48946.2020.9141964.

[32] Opris, V.N. & Opris, M.E. 2016, "EXPERT SYSTEMS RUNNING ACROSS MULTIPLE

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1109/ACCESS.2020.2968621
https://doi.org/10.1109/ECAI.2016.7861068
https://doi.org/10.1109/TEM.2019.2960829
https://doi.org/10.1145/2636328
https://doi.org/10.3390/APP10196870
https://doi.org/10.1088/2053-1591/AB955D
https://doi.org/10.1002/PPAP.201700091
https://doi.org/10.1007/s40860-020-00098-y
https://doi.org/10.12753/2066-026X-20-071
https://doi.org/10.1007/s11071-013-0969-6
https://doi.org/10.1155/2014/409586
https://doi.org/10.1080/00036846.2018.1563671
https://doi.org/10.1007/978-1-4842-6367-9
https://doi.org/10.1007/978-1-4842-6367-9
https://doi.org/10.1109/COMM48946.2020.9141964

CLOUDS. A SUSTAINABLE PERSPECTIVE", Scientific Bulletin "Mircea cel Batran"

Naval Academy, vol. 19, no. 2, pp. 585, 2016. DOI: 10.21279/1454-864X-16-I2-076.

[33] Opris, V.N. & Racuciu, C. 2015, "THE EXPERT SYSTEMS ANALYSIS USING THE

CONCEPT OF BIG DATA AND CLOUD COMPUTING SERVICES", Scientific Bulletin

"Mircea cel Batran" Naval Academy, vol. 18, no. 2, pp. 46-50, 2015. DOI: 10.21279/1454-

864X-17-I1-0 8.

[34] L. A. Dumitru, S. Eftimie, M. I. Mihailescu, S. L. Nita, V. Opris and C. Racuciu, "A novel

architecture for authenticating scalable resources in hybrid cloud," 2016 International

Conference on Communications (COMM), Bucharest, Romania, 2016, pp. 251-254. DOI:

10.1109/ICComm.2016.7528254.

[35] Albeanu G., Madsen H., Popențiu-Vlădicescu F. (2020) Computational Intelligence Approaches

for Software Quality Improvement. In: Pham H. (eds) Reliability and Statistical Computing.

Springer Series in Reliability Engineering. Springer, Cham. DOI: 10.1007/978-3-030-43412-

0_18.

[36] F. Popențiu-Vlădicescu, G. Albeanu and H. Madesn, "Reliability of Modern Engineering

Systems - Towards a Safer World," 2019 2nd International Conference on Computing,

Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2019, pp. 1-5.

DOI: 10.1109/ICOMET.2019.8673474.

[37] Popentiu-Vladicescu, F., Albeanu, G., & Madsen, H. (2019). Improving software quality by

new computational intelligence approaches. In Proceedings of 25th ISSAT International

Conference on Reliability & Quality in Design (pp. 152-156). [RQD25-152]

[38] F. Popentiu-Vladicescu and G. Albeanu, "Software reliability in the fog computing," 2017

International Conference on Innovations in Electrical Engineering and Computational

Technologies (ICIEECT), Karachi, 2017, pp. 1-4. DOI: 10.1109/ICIEECT.2017.7916578.

[39] Mihailescu, Marius Iulian and Stefania Loredana Nita. "CSAP: Cyber Security Asynchronous

Programming With C++20 and C# 8 for Internet of Things and Embedded Software

Systems." Examining the Impact of Deep Learning and IoT on Multi-Industry Applications,

edited by Roshani Raut and Albena Dimitrova Mihovska, IGI Global, 2021, pp. 249-269.

DOI: 10.4018/978-1-7998-7511-6.ch014.

[40] Kuchta V., Sharma G., Sahu R.A., Markowitch O. (2018) Multi-party (Leveled) Homomorphic

Encryption on Identity-Based and Attribute-Based Settings. In: Kim H., Kim DC. (eds)

Information Security and Cryptology – ICISC 2017. ICISC 2017. Lecture Notes in

Computer Science, vol 10779. Springer, Cham. DOI: 10.1007/978-3-319-78556-1_5.

[41] YANG, Yang; LIU, Ximeng; and DENG, Robert H.. Multi-user multi-keyword rank search

over encrypted data in arbitrary language. (2017). IEEE Transactions on Dependable and

Secure Computing. 17, (2), 320-334. Research Collection School Of Computing and

Information Systems. DOI: 10.1109/TDSC.2017.2787588.

https://doi.org/10.21279/1454-864X-16-I2-076
https://doi.org/10.21279/1454-864X-17-I1-0%208
https://doi.org/10.21279/1454-864X-17-I1-0%208
https://doi.org/10.1109/ICComm.2016.7528254
https://doi.org/10.1007/978-3-030-43412-0_18
https://doi.org/10.1007/978-3-030-43412-0_18
https://doi.org/10.1109/ICOMET.2019.8673474
https://doi.org/10.1109/ICIEECT.2017.7916578
https://doi.org/10.4018/978-1-7998-7511-6.ch014
https://doi.org/10.1007/978-3-319-78556-1_5
https://doi.org/10.1109/TDSC.2017.2787588

