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Abstract. This paper refers to several other analytical methods used in the research of drawing, 

other than the classic. 
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Introduction 

The research of the stamping process was performed with both analytical and experimental 

methods. In the category of analytical methods for drawing research, in a previous paper was 

presented the method of solving equilibrium equations [6], and in this paper will be presented two 
other methods used for this purpose. 

1.  The sliding line method 

     In the case of a solid body subjected to a flat stress state, at any point on a surface inclined to an 

xOy coordinate system, two normal stresses and one tangential will act. For a certain position of the 

surface it can be like τ = 0 and as a result the normal stresses have extreme values, called main normal 
stresses (σ1, σ2) [4]. 

As a result, for any point inside a semi-finished product subjected to deformation, there are two 

perpendicular directions on which the unit forces 1 and 2 act and two other directions inclined with 

respect to the first by 45°, after which τmax = K acts. Under these conditions, taking into account 

different points on the surface of the material to be processed, a network consisting of two systems of 

curves will be obtained, at which the tangents have the direction of the main normal stresses.  In 

relation to these two systems, two other curve systems can be built, in which the tangents have the 

direction of the maximum tangential stresses (Fig. 1). 
By processing the relations that give the plane state of efforts [1] we arrive at the differential 

equations of the sliding lines: 
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Taking into account the relationships: 
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equations (1) - (3) become: 

sin2αKσσ medx += ;                                                     (7) 

sin2αKσσ medy −= ;                                                     (8) 

cos2αKτxy −= .                                                         (9) 

The tangents to the sliding lines have the directions of τmax = K. They intersect the axis Ox under 

the angles α and (α + π / 2). As a result, the differential equations of the sliding lines are:  

;tgα
dx

dy

1

=







                                                          (10) 









+=









2

π
αtg

dx

dy

2

.                                                   (11) 

Integration of the plasticity equation 

Inside a body subjected to a state of flat stress, an O point is considered, through which two 
mutually perpendicular sliding lines pass (Fig. 2. [1]). In the xOy coordinate system, the tangent T 

taken to the sliding line , forms the angle α with the axis Ox. It is known that along the sliding lines,  

the tangential stresses are maximum and remain constant. 

It is considered a volume element in the shape of a triangular prism, arranged so that the inclined 

surface ΔA is tangent to the sliding line  at point O and the other two surfaces are perpendicular to  

 



 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
the coordinate axes. The aim is to determine the value of the average normal voltage, reason for 

which the projections of the forces in the direction of the normal N are made, obtaining:  

−−+= sindAcosdAsindAcosdAdA yxxxyymed                    (12) 

Considering that: 

;sinαdAdAx =                                                    (13) 

cosαdAdAy = ;                                                    (14) 
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Differentiating the relation (15) in relation to α we obtain: 

( ) cos2ατ2sin2ασσ
dα

dσ
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     From relationships (7) - (9), (16) result: 

= Kd2d med                                                           (17) 

When the hypotenuse “ab” coincides with the sliding direction , will result in the relationship 17. 

     Therefore, in the general case it is considered: 

= Kd2d med .                                                   (18) 

Integrating the differential equation (18), along the sliding line, from point “a” to point “b”, we 

obtain: 

( )baba K2 −=−  or  abba K2 =− .                                      (19) 

     The relation (19) represents the integral of the plasticity equation or the integral of Hencky and 

shows that if we know (a) - the average normal stress at point “a” and (αab) - the angle of rotation of  

the sliding lines from “a” to in “b”, the value of the average normal stress acting at point “b” can be 

determined. 

In order to construct the network of sliding lines when drawing a cylindrical part (Fig. 3 [1], [21]) , 

it is observed that at a certain point in the flange of the semi-finished product the radial tension   and 

the tangential tension t arise, which are intersected by the sliding lines under a angle of 45°. 

So:               
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Equation (18) becomes: 
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In point “b”, we have: 
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In point “a”, we have:  
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From the last three relations it results:  

r
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For K = 0.5 · c and a certain radius , the stress required for deep drawing becomes: 
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2.  FEM 

In ([17], [21]) a presentation of the finite element method (FEM) is given. Initially, the two types of 

approximations are defined: non-nodal and nodal. For this we know some values of the exact function 

uex in some points and to determine the values it takes in other points it is necessary to construct an 

approximate function of the form u (x, a1, ..., an) so that: 
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where: ai represents the general parameters of the approximation; with P(x) the basic functions of  the 

approximation were noted; the relations (26) correspond to the non-nodal approximation. 

If the approximation error ( ) ( ) ( ) 0=−= xuxuxe ex in any node xi, then the nodal parameters 

(nodal variables) are obtained ( ) ( ) iiiex uxuxu == and the relation (26) becomes:  
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wherein the relations (27) correspond to the nodal approximation and N(x) represent 

interpolation functions that verify the relation: 
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In the case of a Lagrange nodal approximation with “n” points, the relation (28) becomes: 
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For domains of complex shape with a large number of nodes, the approximation is made with the 

finite element, which involves the analytical definition of all subdomains into which the initial domain 

was divided (elements) and the construction of interpolation functions Ni(x), corresponding to each 

finite element. The notion of reference element, Vr, is introduced, which has a simple shape and is in a 
reference space and which can be transformed into any of the real elements Ve by a geometric 

transformation (Fig.4 [17]) of the form: 

( ) ( ) ( )  ,;: nx Nx  x =→                                             (30) 

in which N  the functions of geometric transformation have been noted, which are polynomials as a 

function of ξ and are constructed similarly to the functions of interpolation N(ξ). 

In the space (x, y) we worked with the approximation function u(x), and in the space (ξ, η) we 

worked with the function u(ξ, η), the relation between ξ and x being defined by (30). The functions 

u(ξ)  u(x), but take the same value at the corresponding points by transformation. 

To construct the N (ξ) functions and the coordinate vector of each element  nx , two tables are 

drawn up: CORG and CONEC. CORG contains all the geometric nodes (1, 2, ..., n) provided with the 

nodal coordinates ( ) ( ) nnyxyx ,11  , and CONEC contains all the elements ( )eln,2,1,   defined by 

the list of numbers of the geometric nodes (1, 2, ..., ne). In order to establish the list of nodes of an 

element, it is necessary to adopt a direction of movement of the element.  

 
 

 



 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

Tabel 1. The table CONEC 

Elements List of geometric node numbers 

1 

2 

.. 

.. 

eln  

1……. ne 
.. 

.. 

.. 

n1……
e

nn  

 

Tabel 2. The table CORG 

Knots Nodal coordinates 

1 

2 
.. 

.. 

.. 

n 

x1 

x2 

.. 

.. 

.. 

xn 

y1 

y2 

.. 

.. 

.. 

yn 

 

For “n” interpolation nodes with xn coordinates (which may or may not be confused with geometric 

nodes) located on the real element Ve and an exact function uex(x), a nodal approximation of the form 

(27) can be constructed, ie:  

( ) ( )  ,uxNxu)x(u nex =                                                (31) 

in which:   ( )nexn xuu =  represent the nodal variables and the interpolation functions on the real 

element Ve were denoted by N(x). 

Is used on the reference element Vr a nodal approximation uex (ξ) having the form: 

( ) ( ) ( )  nex uNuu = ,                                                 (32) 

wherein N (ξ) represents the interpolation functions on the reference element Vr. 
While the functions N(x) depend on the coordinates of the nodes of the element, so they differ from 

one element to another, the functions N(ξ) are independent of the geometry of the real element V e,  so 

they can be used for all elements with the same element of reference characterized by: its shape, its 

geometric nodes, its interpolation nodes. There is no systematic manual technique for constructing 

N(ξ) and ( )N functions, but experience has allowed them to be found for a number of classical 

elements. They have the same properties and are constructed from Lagrange polynomials. The general 

construction method includes the following steps:  
a) Choosing the polynomial basis 



 

 
 

 

 

 

On the reference element Vr is expressed u(ξ) as a linear combination of known functions 
(generally independent monomials) P1 (ξ), ... , Pn (ξ), of the form:  
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The above relation corresponds to the generalized approximation. In this relation was noted the 

generalized variables of the element with "an" and the nodal approximation with ( ) ( )  aNu = . 

The number of functions P(ξ) is equal to the number of nodal variables ({un}) and they form the 

polynomial basis of the approximation, which can be complete or incomplete. 

To build the function N  are chosen: 
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where {ax}, {ay}, {az} represent the generalized coordinates of the element. 

b) Relationships between generalized variables {a} and nodal variables {un} 

  In each interpolation node (ξi) the relation ( ) ( ) iex uuu =  is valid and taking into account (33) 

we obtain: 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

            

  ( )( )0Pdet  ifP

;uPaaPua

ξPξPξP

ξPξPξP

ξPξPξP

u

n

1

n

n

1

nnn

nnn2n1

2n2221

1n1211

n



==

















=

−

−







       (35) 

The relation (34) written in the geometric nodes becomes: 
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c) Expressions of the functions N and N  

  From the relations (33) and (35) results: 
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From the relations (34) and (36) results: 
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These operations are performed once for all real elements, which have the same reference element.  



 

 
 

 

 

 

The assembly of the element equations for obtaining the equations on the whole domain of work 
can be done by the following methods: direct integration of the system equations; determination of 

external forces and moments, when stresses or deformations are known; solving a system of simpler 

equations, when entering experimentally obtained data. 

3. Application of these analytical methods of research of the drawing process 

In [17] the program finite element FORGE2 is presented. 
The finite element method is the most used method for modeling sheet metal deformation 

processes, for determining the drawing limit curves ([15], [23]), or for determining their deformability. 

Also, this method allows the optimization of cold plastic deformation processes, including drawing 

[10]. In [3] is presented a way to analyze the deep drawing process using the finite element method, 

which aims to solve the nonlinear geometric problem of plasticity theory with the finite element 
method, the modified Lagrange formulation and the Newton - Raphson method. Also for deep 

drawing, in [20] is presented an algorithm for numerical integration of the relations corresponding to 

the finite deformations of an anisotropic elastoplastic material. The mathematical model takes into 

account the friction between the punch, the plate and the active plate, the punch can have any shape.  

The exemplification was made on a cylindrical box and there is a good concordance between the 

values of the stresses obtained experimentally and numerically. 
The finite element method is also used to determine the deformability of sheets ([12], [16]), which 

is an important feature for the correct assessment of the use of semi-finished products in order to 

obtain quality parts. In [19] a study on the plastic instability that occurs during deformation is 

presented. Thinning of the sheet occurs when there are unevenness of the deformation speed. After the 

appearance of static instability, the direction of deformation can no longer be controlled as until the 
moment of its appearance. At the end of the process, a local thinning occurs because the process 

satisfies the conditions of kinematic instability. 

The study of the influence of some factors on the coefficient of friction at the deep drawing of  the 

parts is presented in the paper [22]. The factors considered are: the degree of drawing, the pressure on 

the contact surface ([2], [22]), the dimensions of the semi-finished product, its initial thickness. The 
research method used to determine the coefficient of friction by solving on the computer the equations 

of the drawing stresses by Müller's method is described. 

The method of determining the critical load and the limit coefficient for deep drawing of 

cylindrical parts is given in [7]. The research of the loss of the stability of the flange of the semi-

finished product and of the appearance of the corrugations with the formation of wrinkles at the 

stamping is presented in ([24], [25]). 
The drawing with the deliberate thinning of the wall thickness of the anisotropic materials is 

presented in [13], and the choice and use of materials for this process is presented in [11]. In [18] the 

case of obtaining food beverage containers by deep drawing with thinning of the thickness of the semi-

finished steel and aluminum sheet is presented. The studied problems were: lubrication, crack 

formation and prevention of their appearance, removal of the piece from the punch, cutting the edges.  
The obtained results allow to increase the precision of the parts and to optimize the choice of the 

material from which the mold is made. 

In [9] the theoretical analysis of the stress state is performed depending on the force applied on the 

deformed material, in case of successive stamping with thinning of the wall. The formulas for the 

calculation of stresses, forces and the permissible degree of deformation limit when stamped with a 
conical and cylindrical punch in one or more successive dies are presented. The limit deformation 

control mechanism is established, which specifies the ways to intensify the drawing processes as the 

friction conditions are adjusted on the surface of the mold and the angles of inclination of  the molds.  

The concordance of the calculation results with the experimental data led to the design of the 

technological processes for drawing the deep cavities. 
A research on the compatibility of tool and semi - finished material when drawing metal sheets is 

presented in [8]. 



 

 
 

 

 

 

In [14] is presented a methodology for determining the number of passes required for drawing, the 
drawing coefficient for the second and subsequent operations required to obtain cylindrical parts.  The 

basis of this methodology are the equations of the theory of plasticity and the theory of minimax, 

whose application allows the prediction of the influence of technological drawing regimes and 

mechanical properties of the material on the drawing limit coefficient. This methodology contains a 

program that allows the establishment of the limits of the range of values of the drawing coefficient 
for each passage, aspect that is the basis for the design of the technological process of manufacturing 

the parts. 

Using software designed on the finite element method (COSMOS, LS-DYNA, MARC-Mentat)  it 

was possible to analyze the state of stresses and deformations [5] that arises from the stamping of 

small cylindrical parts, obtained from strips of different materials, characterized of different 
plasticities. 

 

 

 References 

 

[1] Banabic D., Dorr I. R., 1992, Deformabilitatea tablelor metalice subţiri, Bucureşti 
[2] Blümel W.K., Interacţiunile de suprafaţã în timpul prelucrãrii prin deformare, conform 

simulãrii pe baza încercãrii de ambutisare pe bandã metalicã, Sheet Metal Industries, februarie 

1980, pag. 152 – 160  

[3] Brunet M., A finite element  method for a numerical analysis of the deep-drawing process , 

Proc. Int. Conf. Numer. Math. Eng.: Theory and Appl. Swansea, 6-10 July, 1987, Numeta 1987, 
vol. 1  

[4] Cazimirovici E., 1982, Teoria deformării plastice, Editura Tehnică, Bucureşti 

[5] Chioibas A., 2004, Cercetari privind influenta conditiilor de deformare asupra calitatii pieselor 

ambutisate, Bucuresti 

[6] Chioibas A., Some analytical methods used to process research drawing - Part I, Journal of 
Physics: Conference Series, Volume 1122, conference 1, IOP Conf. Series: Journal of Physics: 

Conf. Series 1122 (2018) 

[7] Deng Z., Chen H., Sheet metal formability using the FEM, J.Tsinghua Univ., 1989, nr.2  

[8] Dohda K., Kawai N., Compatibility between tool materials and workpiece in sheet-metal 

ironning process,  Trans. ASME. J. Tribol., 1990, nr.2  

[9] Doroşko V.I., 1990-24, Analiz proţessa posledovatelinoi vîtiajki s utoneniem stenki, Lugan. 
Maşinostroit. In-t-Lugansk, p. 274-281  

[10] Drăgănescu F., ş.a., Cercetări privind optimizarea proceselor de prelucrare prin deformare 

plastică la rece folosind simularea numerică cu ajutorul M.E.F . Bucureşti 1991  

[11] Gadzinski S., Wykorzystanie materialu w procesie Hoczenia cienkosciennych wyrobov 

cylindrycznych, Obrob. Plast. Metali., 1989, nr.3  
[12] Ghuida M., Porraro G., Applicatione di una metodologia di calcole FEM alla previsione della 

stampabilita della lamiera, Lamiera-1990, 27, nr.1  

[13] Iakovlev S.S., Arefiev Y.M., Vîtiaka s utoneniem stenku anizotropnovo uprociniaiuscegosia 

materiala, Tul. Politehn.in-t-Tula, 1989  

[14] Iseki H., Sowerby R., , 1990, On the determination on the redrawing ratio in the redrawing of 
cilindrical sheels with a numerical simulation, J. ASME Int. J. Ser. 3, nr.2, p. 376-384  

[15] Josselin H., Studiul C.L. de formare prin ambutisare, Formageet traitements de métaux, nr. 27,  

1971  

[16] Kobayashi S., ş.a. Analysis of a Test Method of Sheet Metal Formability Using the Finite 

Method Journal of Engineering for Industry, 1986, nr. 1  
[17] Maier C., 2003, Proiectarea tehnologică asistată de calculator, Editura Evrika, Brăila  

[18] Misono K., Generalized finite element analysis of sheet metal forming with an elastic-

https://iopscience.iop.org/journal/1742-6596
https://iopscience.iop.org/journal/1742-6596
https://iopscience.iop.org/volume/1742-6596/1122
https://iopscience.iop.org/issue/1742-6596/1122/1


 

 
 

 

 

 

viscoplastic material model, Technol. Repts. Kyushu. Univ., 1989, nr.6  
[19] Moritoki H., Simulating the sheet metal forming pocess with FEM,   Trans. Jap. Soc. Mech. 

Eng., 1990, nr.56  

[20] Sarah M., ş.a. Numerical integration of finite deformation elasto plasticity with application to 

sheet-forming, Comput. Mech. 1988: Theory and Appl.: Proc. Int. Conf. Comput. Eng. Sci. 

Atlanta. 10-14, 1988. vol. 2   
[21] Teodorescu M., ş.a., 1987, Prelucrări prin deformare plastică, vol. I, II, Editura Tehnică, 

Bucureşti 

[22] Vedmedi I.P., Verşinin V.A, Issledovanie na EVM ne katorîh factorov vliiaiuscîh na koeffiţient 

treniia pri glubokai vtiajke detalei, Red. J. Tehnol. I Org. Pr-vo Kiev, 1990  

[23] Veerman C.Chr., Neve P.F., Câteva aspecte ale determinãrii CLA – începutul gâtuirii 
localizate, Sheet Metal Industries, 49, nr. 6, iunie 1972, pag. 421 – 423  

[24] Wang P.C., A Wrinkling index for press forming, Met. Trans. A.,1988, nr.7-12  

[25] Wang X., Lee L., Wrinkling of an unevenly stretched sheet metal, Trans. Asme. J.  Eng. Mater . 

and Technol., 1989, nr.3  

 

 
 

 

 


