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Abstract. This paper introduces ECoSIM, a decision support simulator designed to assist the 

planning and optimization of Energy Communities (ECs). ECoSIM integrates a multi-objective 

optimization model to support communities to determine the optimal configurations for their 

local renewable energy systems (RES). The simulator considers three decision variables: 

photovoltaic (PV) rated power, wind turbine (WT) rated power, and battery energy storage 

system (BESS) capacity. Through the optimization model, these variables are optimized based 

on the community-specific parameters such as community type (residential or mixed), number 

of members, and total annual energy demand (including electric heating, cooling and electric 

transportation). The optimization process models the energy, economic and environmental goals 

of the community through multiple objective functions as follows: maximizing self-sufficiency, 

cost savings, self-consumption and minimizing the payback period. By enabling trade-off 

analysis among conflicting objectives, ECoSIM assists communities to make informed and 

sustainable investment decisions that balance energy, economic and environmental goals. 

Preliminary results demonstrate the performance of the decision support system to find the best 

optimal solution for ECs within budget and technical constraints, aiming to accelerate the 

adoption of decentralized energy systems through customized, data-driven planning.  

Keywords: Energy Communities; Decision support systems; multi-objective optimization; 

differential evolutionary optimization; Renewable Energy Systems. 

1.  Introduction  

The transition towards low-carbon and decentralized energy systems has led to the growing interest in 

Energy Communities (ECs) as a viable and sustainable alternative to conventional energy supply 

models. Energy Communities empower consumers and prosumers who also generate electricity, to 

collectively invest in and manage renewable energy sources (RES), such as solar photovoltaic (PV) and 

wind power, supported by energy storage systems. By enhancing local energy self-sufficiency, reducing 

reliance on centralized grids, and creating cost-effective solutions, ECs have the potential to contribute 

significantly to the decarbonization of the energy sector and to increase resilience at the local level. 

However, the design and operation of ECs pose multiple challenges, particularly related to optimal 

resource sizing, investment planning, and ensuring a balance between technical performance and 

financial viability. 

To support the planning and decision-making process for EC deployment, this paper proposes a 

simulation-based optimization framework that models the load and generation profiles of the community 

based on weather conditions, evaluates the technical and economic performance, and identifies the 

optimal configuration of PV rated power, wind turbine, and the capacity of the energy storage systems. 

The proposed framework is implemented as an interactive web-based simulator, ECoSIM, that 

integrates weather data, tariff schemes, community preferences and generates consumption profiles. A 
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multi-criteria optimization approach is used to balance key objectives such as self-sufficiency, self-

consumption, cost savings, and payback period. The methodology is applied to a case study in 

Constanța, Romania, demonstrating how digital tools facilitates the creation of energy-resilient 

communities. 

2.  Literature review 

A systematic literature review on the concept of energy communities was performed (de São José et al., 

2021) using six databases and carefully selected keywords. It found that overlapping definitions created 

confusion among researchers and readers, highlighting the need for standardized terminology. The 

review also emphasized the importance of studying synergistic improvements in multi-purpose energy 

communities and exploring energy islands as models for developing adaptable solutions for land-based 

communities. Also, (Kubli & Puranik, 2023) conducted a morphological analysis of 90 energy 

communities and pioneering companies to explore business model design options applicable to energy 

communities. It identified 25 emerging design options and developed a typology that supports the 

configuration of tailor-made business models. The analysis showed potential for further development of 

energy communities and contributed to the literature by offering one of the first business model 

perspectives through a morphological approach, providing a practical tool for community developers. 

Another research aimed to enhance understanding of the social arrangements, technical designs and 

impacts of energy communities (Gjorgievski et al., 2021). It discussed the roles and interactions of 

different actors, reviewed the technical design of local energy systems based on community goals and 

benchmarked the literature by methods, modelling objectives, and design constraints. Furthermore, 

(Dudka et al., 2023) analyzed 164 French energy communities to examine how increasing involvement 

of businesses and state authorities has impacted citizen engagement. It identified four configurations of 

energy citizenship: full citizen ownership, shared citizen ownership, citizen crowdfunding, and civic 

participation. The results showed that strong citizen engagement and community logic remained 

dominant across the models.  

Additionally, (Ahmed et al., 2024) reviewed the shift from centralized to decentralized energy 

systems, emphasizing the role of renewable energy communities (RECs) in advancing local resilience, 

efficiency, and carbon neutrality. It highlighted the European Union’s support for energy communities 

and explored the global progress, benefits, and key activities of RECs. The review found varying levels 

of adoption across countries and identified challenges alongside recommendations to support REC 

growth. Another research conducted an economic feasibility analysis of energy communities 

considering two investment options: third-party investment and self-investment by households, along 

with various cost allocation methods (Li & Okur, 2023). An optimization model was developed to 

determine the optimal operation of the energy community. The results showed that third-party 

investment was economically feasible under appropriate energy prices and payback periods, with the 

highest profits achieved at a 15-year payback time. Households, however, benefited more from joint 

self-investment despite the high initial costs. The research highlighted that energy costs for households 

were significantly influenced by payback time and cost allocation methods, providing valuable insights 

for investment and cost-sharing decisions. 

Also, (Petrovics et al., 2024) examined the scaling of energy communities by analyzing 28 cases 

using a fuzzy set Qualitative Comparative Analysis (QCA). It identified eight necessary conditions or 

combinations of conditions that support actionable scaling mechanisms. The research provided concrete 

insights for policymakers on the types of capacity support, structures and tools needed to connect and 

expand energy communities. By empirically identifying crucial leverage points, the article contributed 

to strategies for upscaling the impact of energy communities, positioning them as a key component in 

global climate governance. Moreover, (Bielig et al., 2022) analyzed the social impact of Energy 

Communities in Europe by clarifying key concepts such as community empowerment, social capital, 

energy democracy and energy justice. A systematic literature review was conducted, and an evidence 

gap map was developed to classify existing studies by methods and constructs measured. The findings 



 

 

 

 

 

 

revealed a lack of rigorous evidence, particularly from quantitative, experimental, longitudinal and 

counterfactual studies.  

A novel modeling framework to support energy systems planning for remote communities was 

proposed (Quitoras et al., 2021) by incorporating decision-maker attitudes toward multiple uncertainties 

and energy solution philosophies. Using a multi-objective optimization approach, the study evaluated 

various configurations to minimize the levelized cost of energy and fuel consumption, with a case study 

in the Northwest Territories, Canada. The inclusion of uncertainties reduced the renewable energy 

penetration from 69% to 51% and increased diesel consumption. The analysis also demonstrated that 

retrofitting building enclosures could significantly lower heating demand. The study provided actionable 

recommendations to enhance energy security, affordability and sustainability, while supporting 

Indigenous-led energy initiatives. Moreover, (Fangjie et al., 2022) proposed a multi-objective optimal 

scheduling model for community integrated energy systems under uncertainty and demand response 

constraints. It developed a source-load uncertainty model, a comprehensive demand response model, 

and constructed satisfaction and utility models based on supplier profit, resident cost, carbon treatment 

and renewable energy use. Using the entropy weight method and Muirhead mean operator, the best 

strategy was determined. Case studies showed improved robustness, a 7.59–9.84% reduction in resident 

cost, a 17.71–95.64% reduction in carbon treatment and increases in supplier profit and renewable 

energy use.  

3.  Materials and methods  

The main objective of the simulator is to provide decision support for creating and developing Energy 

Communities. Thus, the proposed methodology provides a framework that collects input data, 

requirements, models the load and generation profiles, optimizes the rated power of the PV and wind 

systems, including the storage capacity and finally, assesses the energy sufficiency and financial 

viability of the results. Figure 1 depicts the steps of the methodology that are described in the following 

subsections. 

 
Figure 1. Steps of the proposed methodology  

3.1.  Modelling EC profiles and requirements  

For creating energy communities, the following aspects related to the electricity consumption should be 

considered: size and structure of the community (number of members, type of members – residential, 

commercial, public or industrial consumers), typical load curves, load requirements (public 

consumption, individual consumption, heating and cooling, EV transportation), electricity tariffs (Time 

of Use – ToU and Feed-In Tariff – FiT). Also, budgetary constraints and restrictions related to the 

available surface for installation of the PV and wind turbines are modelled. Let’s denote by 𝑚 the 

number of members; 𝐶𝑡 the total electricity load of the community for each time interval 𝑡; 𝑇𝑜𝑈𝑡 , 𝐹𝑖𝑇𝑡 
the tariff rates for ToU and FiT; 𝐵𝑅𝐸𝑆 the maximum available budget for the initial investment in RES 

and by 𝐶𝑜𝑠𝑡𝑃𝑉 , 𝐶𝑜𝑠𝑡𝑊𝑇 , 𝐶𝑜𝑠𝑡𝑆𝐷 the specific costs for PV, WT and storage systems, including equipment 

and installation. These input parameters are provided by the EC based on its requirements and 

Step 1 – Model load profiles 
and requirements 

Step 2 – Optimize rated power and 
capacity of the PV, WT and storage  

Step 3 – Assess energy sufficiency 
and financial viability 



 

 

 

 

 

 

consumption records. In case the load records with low granularity (𝑡) are not available, the values can 

be estimated based on historical weather records extracted from the open weather APIs (for e.g., Open-

meteo1) using eq. (1) and (2): 

𝐿𝑓𝑡 = min (1, (w0 +w1 × |temp
t − 20| − w2 × 𝑠𝑟

t +w3 × ws
t) × τ𝑡) (1) 

𝐶𝑡 =
𝐿𝑓𝑡

∑ 𝐿𝑓𝑡𝑡
× 𝐶𝑇 

(2) 

Where: 𝐿𝑓𝑡 – load factor; w0, w1, w2, w3- set of weights between 0.0005 and 0.01; tempt – temperature; 

𝑠𝑟t – solar radiation; wst – wind speed; τ𝑡- hourly multiplier; 𝐶𝑇 – total annual load of the community.  

3.2.  Optimize the rated power of the PV and wind turbine and the capacity of the storage system 

A multi-optimization model is used to determine the optimum values of the rated power of the PV 

and WT and the capacity of the storage device. The decision variables of the model are set as follows: 

𝑃𝑃𝑉 – rated power of the PV system; 𝑃𝑊𝑇 – rated power of the wind turbine; 𝐶𝑎𝑝𝑆𝐷 – capacity of the 

storage system. The aim of the community is to increase self-sufficiency and self-consumption to 

achieve energy independence or reduce as much as possible the grid dependence. Also, financial aspects 

are considered when creating an EC such as cost savings of the members and payback period of the 

initial investment. Therefore, the following objective functions are modelled: 

O1: Self-sufficiency is determined as the ratio between the self-generated energy consumed locally 

and the total consumption of the community for each time interval. It expresses the degree of 

independence since a greater value indicates that the community mainly covers its load from the local 

generation.  

max 𝑆𝑆 =
∑ min (𝐺𝑡,𝐶𝑡)𝑡

∑ 𝐶𝑡𝑡
  (3) 

Where 𝐺𝑡 represents the self-generated energy by the PV (𝐺𝑃𝑉
𝑡 ) and WT (𝐺𝑊𝑇

𝑡 ) and discharged by the 

storage device (𝑃𝑆𝐷,𝑑𝑖𝑠
𝑡 ). 

𝐺𝑡 = 𝐺𝑃𝑉
𝑡 + 𝐺𝑊𝑇

𝑡 + 𝑃𝑆𝐷,𝑑𝑖𝑠
𝑡  (4) 

The potential energy generated by each subsystem is determined based on the weather records and 

deterministic models of the photovoltaics and wind turbines as described in (Oprea & Bâra, 2023), 

(Manwell et al., 2010) and summarized in the following equations: 

𝐺𝑃𝑉
𝑡 = 𝑃𝑃𝑉 × 𝜂𝑆𝑇𝐶 × [1 + 𝛾 × (𝑇𝑐𝑒𝑙𝑙

𝑡 − 𝑇𝑆𝑇𝐶)] ×
𝑠𝑟𝑡

𝑠𝑟𝑆𝑇𝐶
 

(5) 

𝐺𝑊𝑇
𝑡 =

{
 
 

 
 

0,𝑤𝑠𝑡 < 𝑤𝑠𝑐𝑖𝑛 𝑜𝑟 𝑤𝑠
𝑡 < 𝑤𝑠𝑐𝑜𝑢𝑡

𝑃𝑊𝑇 × (
𝑤𝑠𝑡 − 𝑤𝑠𝑐𝑖𝑛
𝑤𝑠𝑟 −𝑤𝑠𝑐𝑖𝑛

)

3

, 𝑤𝑠𝑐𝑖𝑛 ≤ 𝑤𝑠
𝑡 ≤ 𝑤𝑠𝑟

𝑃𝑊𝑇, 𝑤𝑠𝑟 ≤ 𝑤𝑠
𝑡 ≤ 𝑤𝑠𝑐𝑜𝑢𝑡

 

(6) 

Where: 

• 𝜂𝑆𝑇𝐶 - efficiency under standard test conditions (STC), between 15% and 22% 

• 𝛾 - temperature efficiency coefficient, between -0.004 to -0.005 per °C 

• 𝑇𝑆𝑇𝐶 - standard temperature (25°C) 

• 𝑇𝑐𝑒𝑙𝑙
𝑡  - cell temperature (°C) 

• 𝑠𝑟𝑡 - solar irradiation at time t 

• 𝑠𝑟𝑆𝑇𝐶 - solar irradiation under standard test conditions (1000 W/m²) 

• 𝑤𝑠𝑐𝑖𝑛 - minimum wind speed for wind generation (3 m/s) 

• 𝑤𝑠𝑟 - wind speed for rated power (10 m/s) 

• 𝑤𝑠𝑐𝑜𝑢𝑡 - maximum wind speed for wind generation (25 m/s) 

 
1 https://open-meteo.com/  

https://open-meteo.com/


 

 

 

 

 

 

The operating model of the storage system is determined based on the SD capacity, rated power and 

surplus or demand in the community. For charging, 𝑃𝑆𝐷,𝑐ℎ𝑎
𝑡  is calculated as the minimum available 

power between the surplus (difference between the generated power and load), rated power and the 

remaining capacity of the SD.  

𝑃𝑆𝐷,𝑐ℎ𝑎
𝑡 = min (𝐺𝑊𝑇

𝑡 + 𝐺𝑃𝑉
𝑡 − 𝐶𝑡 , 𝑃𝑆𝐷 ,

𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶
𝑡

𝜂𝑆𝐷
) , 𝑖𝑓 𝐺𝑊𝑇

𝑡 + 𝐺𝑃𝑉
𝑡 − 𝐶𝑡 > 0   (7) 

Where: 

• 𝑃𝑆𝐷 – rated power of the storage device considered as a fraction of its capacity 

• 𝑆𝑂𝐶𝑚𝑎𝑥 – maximum state of charge, around 97-98% of 𝐶𝑎𝑝𝑆𝐷 

• 𝜂𝑆𝐷- charging/discharging efficiency, between 90 and 95% 

• 𝑆𝑂𝐶𝑡- current state of charge (SOC) of the storage device 

For discharging, 𝑃𝑆𝐷,𝑑𝑖𝑠
𝑡  is calculated as the minimum available power between the deficit (difference 

between the load and local generation), rated power and the available state of charge. 

𝑃𝑆𝐷,𝑑𝑖𝑠
𝑡 = min(𝐶𝑡 − 𝐺𝑊𝑇

𝑡 − 𝐺𝑃𝑉
𝑡 , 𝑃𝑆𝐷 , 𝜂𝑆𝐷 × 𝑆𝑂𝐶

𝑡) , 𝑖𝑓 𝐶𝑡 − 𝐺𝑊𝑇
𝑡 − 𝐺𝑃𝑉

𝑡 > 0   (8) 

O2: Self-consumption is defined as the ratio between the self-generated energy consumed locally and 

the total self-generated energy for each time interval. A greater value indicates that the energy is 

consumed locally, thus reducing the exported energy into the main grid.  

max 𝑆𝐶 =
∑ min (𝐺𝑡,𝐶𝑡)𝑡

∑ 𝐺𝑡𝑡
  (9) 

O3: Cost savings of community is determined as the ratio between the savings of the members and 

the initial payment (before affiliation with the EC). The payment of the community is calculated as the 

difference between the cost of energy consumed from the grid and the revenue for the energy injected 

into the grid. The initial payment is calculated as the cost of energy consumed exclusively from the grid.  

max𝐶𝑆 =
∑ 𝐶𝑡×𝑇𝑜𝑈𝑡𝑡 −∑ (max(𝐶𝑡−𝐺𝑡,0)×𝑇𝑜𝑈𝑡−max(𝐺𝑡−𝐶𝑡,0)×𝐹𝑖𝑇𝑡)𝑡

∑ 𝐶𝑡×𝑇𝑜𝑈𝑡𝑡
  

(10) 

O4: Payback period is calculated based on the initial investment cost (𝐶𝑎𝑝𝐸𝑥) for the equipment and 

installation of the RES systems, including storage. This metric indicates the duration (years) necessary 

to recoup the initial investment, taking into account the total annual savings from self-consumption as 

well as the revenue generated from energy injected into the grid.  

min𝑃𝐵 =
𝐶𝑎𝑝𝐸𝑥

∑ min
𝑡
(𝐶𝑡,𝐺𝑡)×𝑇𝑜𝑈𝑡𝑡 +max(𝐺𝑡−𝐶𝑡,0)×𝐹𝑖𝑇𝑡

  (11) 

Where 𝐶𝑎𝑝𝐸𝑥 = 𝑃𝑃𝑉 × 𝐶𝑜𝑠𝑡𝑃𝑉 + 𝑃𝑊𝑇 × 𝐶𝑜𝑠𝑡𝑊𝑇 + 𝐶𝑎𝑝𝑆𝐷 × 𝐶𝑜𝑠𝑡𝑆𝐷 

The following constraints are imposed on the optimization model: 

C1: Surface constraints for PV and wind turbine installation. The size of the PV power plant and the 

WT should be less than or equal to the available surface for RES installation: 

𝑃𝑃𝑉 × 𝐴𝑃𝑉/𝑘𝑊𝑝 + 𝑃𝑊𝑇 × 𝐴𝑊𝑇/𝑘𝑊𝑝 ≤ 𝐴𝑅𝐸𝑆 (12) 

Where 𝐴𝑃𝑉/𝑘𝑊𝑝 and 𝐴𝑊𝑇/𝑘𝑊𝑝 are specific areas for PV and WT per kWp and 𝐴𝑅𝐸𝑆 represents the 

maximum available surface for RES installation. 

C2: Budget constraints. The initial investment cost for the RES components should be less than or 

equal to the available budget of the community: 

𝑃𝑃𝑉 × 𝐶𝑜𝑠𝑡𝑃𝑉 + 𝑃𝑊𝑇 × 𝐶𝑜𝑠𝑡𝑊𝑇 + 𝐶𝑎𝑝𝑆𝐷 × 𝐶𝑜𝑠𝑡𝑆𝐷 ≤ 𝐵𝑅𝐸𝑆 (13) 
C3: Operational constraints of the storage system. The current state of charge of the SD should be 

greater than or equal to a minimum SOC and less than or equal to its maximum SOC and the 

charging/discharging power should be less than the rated power of the SD: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶
𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (14) 

0 ≤ 𝑃𝑆𝐷,𝑐ℎ𝑎
𝑡 , 𝑃𝑆𝐷,𝑑𝑖𝑠

𝑡 ≤ 𝑃𝑆𝐷 (15) 

Also, the following constraint is imposed to avoid simultaneous charging and discharging: 

𝑃𝑆𝐷,𝑐ℎ𝑎
𝑡 × 𝑃𝑆𝐷,𝑑𝑖𝑠

𝑡 = 0 (16) 

 



 

 

 

 

 

 

For the decision variables the minimum bounds are set to zero and the maximum bounds are set 

based on the budget constraints.  

The multi-objective model is transformed into a multi-criteria objective function that aims to maximize 

self-sufficiency, self-consumption, and cost savings, while minimizing the payback period. The term 

𝑃𝐵/10 normalizes the payback period to align the scale with other terms.  

 min 𝑓𝑜𝑏𝑗 = − 𝜃1 × 𝑆𝑆 − 𝜃2 × 𝑆𝐶 − 𝜃3 × 𝐶𝑆 + 𝜃4 × 𝑃𝐵/10 (17) 
Where 𝜃1, 𝜃2, 𝜃3, 𝜃4 are weighing factors reflecting the relative importance of each objective. 

The problem is solved using the Differential Evolution (DE) algorithm, a population-based, 

stochastic global optimization method suitable for non-linear, non-differentiable, and multi-modal 

objective functions. DE uses an iterative approach performing the following steps: i) mutation - donor 

vector is generated for each candidate by adding the weighted difference of two randomly selected 

population vectors to a third vector; ii) crossover - the donor vector is combined with the target vector 

to produce a trial vector; iii) selection - the trial vector replaces the target vector if it yields a better 

objective value. DE is a robust solver due to its ability to avoid local minima, and simplicity of 

implementation without the need for gradient information. 

3.3.  Assess the energy sufficiency and financial viability 

To evaluate the optimization results and the viability of the EC project, several key performance 

indicators (KPIs) are calculated that reflect the self-sufficiency, energy independence and financial 

performance.  

From the energy perspective, Grid Dependency Index (GDI) is calculated that quantifies the extent 

to which an energy community relies on electricity imported from the external grid. It is calculated as 

the ratio of imported energy to the total energy demand over a given period. A lower GDI indicates a 

higher degree of energy autonomy, while a higher value suggests greater dependency on the external 

power system. 

𝐺𝐷𝐼 =
∑ max (𝐶𝑡−𝐺𝑡,0)𝑡

∑ 𝐶𝑡𝑡
  (18) 

From the financial perspective, Net Present Value (NPV), Internal Rate of Return (IRR) and Return 

on Investment (ROI) are calculated to assess the financial viability of the EC project.  

NPV is a financial metric that evaluates the profitability of an investment by calculating the difference 

between the present value of cash inflows and outflows (𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤𝑡) over the project’s lifetime (𝑇) 

adjusted with a discount rate (𝑟). A positive NPV indicates a financially viable project. 

𝑁𝑃𝑉 = −𝐶𝑎𝑝𝐸𝑥 + ∑
𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤𝑡

(1+𝑟)𝑡
𝑇
𝑡=0   (19) 

IRR is the discount rate at which the NPV of all cash flows (both incoming and outgoing) equals 

zero. It represents the project’s expected annual rate of return and is used to assess investment 

attractiveness. 

0 = −𝐶𝑎𝑝𝐸𝑥 + ∑
𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤𝑡

(1+𝐼𝑅𝑅)𝑡
𝑇
𝑡=0   (20) 

ROI measures the gain or loss relative to the initial investment cost, typically expressed as a 

percentage. It provides a simple indication of overall profitability. 

𝑅𝑂𝐼 =
∑ 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤𝑡𝑇
𝑡=0

𝐶𝑎𝑝𝐸𝑥
× 100  (21) 

4.  Results and discussions 

The methodology is implemented as an online simulator called ECoSIM2 developed in Python with 

Streamlit3 that provides an easy interface to input data and visualize the results of the optimization 

model. For simulations, a mixed community with 100 residentials and 2 commercial consumers located 

in Constanta, Romania (latitude 44.177269 and longitude 28.652880) is considered, having an annual 

 
2 https://smart-optim-energy.ase.ro:80/ecosim/  
3 https://streamlit.io/  

https://smart-optim-energy.ase.ro:80/ecosim/
https://streamlit.io/


 

 

 

 

 

 

consumption of 250000 kWp. The community intends to switch from conventional heating/cooling to 

Heat Pumps (HP), therefore an average rated power of 7kWp/member is added to simulations and the 

operation of the HP are modelled based on the weather conditions. Also, several EV stations are added 

to allow members to charge their electric vehicles. The annual distance that needs to be covered by EV 

charging is set to 500000 km per year. The maximum budget is €150000 and the available surface for 

RES installation is 1000m2. Based on the location of the community, historical weather records are 

extracted from the weather API and the load for each time interval is generated using eq. (1-2). The 

community intends to invest in a PV power plants and a storage system and uses the optimizer to 

determine the optimum values of the rated power and the SD capacity. The optimal PV rated power is 

197.69 kWp and storage capacity is 323.23 kWh, obtained using DE algorithm by setting the weights 

of the objective function as follows: 𝜃1 = 0.5, 𝜃2 = 0.2, 𝜃3 = 0.2, 𝜃4 = 0.1. Figure 2 illustrates the 

hourly load profile of the community, including baseline consumption, HP consumption for 

heating/cooling and water heating, EV charging consumption. Between 8:00 and 16:00 the load is 

covered by the PV generation and after 16:00 until 2:00 the storage device covers between 50% and 

20% of the demand.  

 

 
Figure 2. Hourly load profile and generation 

 

In Figure 3, the energy distribution between self-generation, self-consumption, gird consumption and 

feed-in energy reflect a high self-consumption (71%) and a relatively moderate grid reliance (49%). 

There is room for optimization (shifting the consumption when the generation exceeds the demand) 

since the feed-in energy is 29% of the total generated energy. 

 

 
Figure 3. Energy distribution between self-consumption, gird consumption and feed-in 

 



 

 

 

 

 

 

The monthly costs and revenues are depicted in Figure 4. The self-consumption revenue varies 

between €2000 and €3000 during winter months when the feed-in revenue is almost zero, increases up 

to €4500 during spring and autumn and exceeds €5000 in summer when the feed-in revenue increases 

up to €2000. The total payment of the community decreases from €8000 in winter months to -€2000 in 

summer months, when the community has a net revenue from feed-in energy.  

 

 
Figure 4. Monthly cost and revenue of the community 

 

To assess the viability of the project, the KPIs are calculated, and Monte Carlo analysis is performed 

to evaluate the risks of the project for its lifetime of 25 years, considering a discount rate of 3%. The 

risk analysis is performed by varying the tariff rates with ±50%, the generation decrease with 35% due 

to degradation and the operational costs increase with 50%.  

 
Figure 5. Monte Carlo analysis 

 

In the case of NPV, the mean value is 548,459.54 € (5th percentile: 390,258.19 €, 95th percentile: 

715,413.11 €). The project is financially viable, as the average NPV is positive. As for the IRR, the 

mean value is 28.66% (5th percentile: 22.53%, 95th percentile: 34.99%), indicating that the project is 

attractive, as the average IRR is higher than the discount rate. 



 

 

 

 

 

 

The KPIs for the EC for the entire project lifetime are centralized in Table 1.  

 

Table 1. KPIs for the EC project lifetime 

KPI Value 

Self-Sufficiency (SS) 50.6% 

Self-Consumption (SC) 71.0% 

Grid Dependence Index (GDI) 49.4% 

Cost Savings (CS) 59.9% 

Net Present Value (NPV) €680591 
Internal Rate of Return (IRR) 70.88% 

Payback Period (PB) 1.4 years 

Return on Investment (ROI) 1676.39% 

Initial payment per member 
Residential €471.5 

Commercial €23573 

Final payment per member 
Residential €188.7 

Commercial €9433 

 

The energy community achieves a self-sufficiency rate of 50.6%, meaning that over half of its 

electricity demand is met by local generation (PV and discharging of the SD), while the self-

consumption rate of 71.0% indicates efficient utilization of generated energy within the community. A 

GDI of 49.4% reflects a moderate reliance on the external grid, in line with the achieved self-sufficiency. 

Economically, the project is highly attractive, with cost savings of 59.9% over its lifetime, a NPV of 

€680,591, and an IRR of 70.88%, significantly exceeding typical investment benchmarks. The payback 

period is just 1.4 years, suggesting a rapid return on the initial investment. The high value of ROI of 

1676.39% further confirms the project's profitability. From a member perspective, the initial electricity 

cost per residential unit is €471.5 and €23,573 per commercial member, while the final cost drops to 

€188.7 for residential and €9,433 for commercial members, indicating high benefits and incentivising 

participation in the community energy project. 

5.  Conclusions 

This paper proposed a decision-support framework implemented as a simulator called ECoSIM for 

optimizing the design and operation of Energy Communities based on local renewable generation and 

energy storage. The framework integrates data-driven load modeling, deterministic energy system 

simulations, and multi-objective optimization to evaluate both energy performance and economic 

feasibility. Applied to a mixed residential-commercial community in Constanța, the optimized 

configuration resulted in a PV installation of 197.69 kWp and a battery storage capacity of 323.23 kWh, 

achieving a self-sufficiency of 50.6% and self-consumption of 71.0%. Financial results are equally 

promising, with a net present value of €680,591, an internal rate of return of 70.88%, and a payback 

period of just 1.4 years. The Monte Carlo analysis further confirmed the robustness of the project against 

uncertainties in tariffs, generation, and operational costs. 

ECoSIM provides stakeholders, such as municipalities, cooperatives, or private inverstors, a practical 

solution to evaluate and optimize EC configurations in a location-specific and user-centric manner. 

Future work will focus on expanding the simulator’s capabilities by integrating real-time data feeds, 

incorporating behavioral modeling of end-users, and supporting additional flexibility assets such as 

demand response.  
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