

Volume XXVI 2023

ISSUE no.2

MBNA Publishing House Constanta 2023

doi: 10.21279/1454-864X-23-I2-016
SBNA© 2023. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER • OPEN ACCESS

Optimization of sensor data gathering interface for

Platmarisc project

To cite this article: A. Atodiresei, A. Băutu and S. Diaconu, Scientific Bulletin of Naval Academy, Vol.

XXVI 2023, pg. 136-143.

Submitted: 22.05.2023

Revised: 05.09.2023

Accepted: 10.10.2023

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

http://www.anmb.ro/

Optimization of sensor data gathering interface for Platmarisc
project

Anca Atodiresei1, Andrei Băutu2, and Simona Diaconu3

1 “Mircea cel Bătrân” Naval Academy, Romania, anca.atodiresei@anmb.ro
2 “Mircea cel Bătrân” Naval Academy, Romania, marian.cata@anmb.ro
3 Coremar SA, simona.diaconu@coremar.ro

Abstract. Software interfaces enable communication between different system components,
regardless of platform, language, or hardware. They integrate existing components and make
development easier. Protocols and technologies like XML, JSON, and WebSockets facilitate
this communication. As technology evolves, interfaces will become more complex and
specialized for real-time communication, particularly in IoT. Effective interfaces are essential
for modern software development. In this article, we analyzed various communication
protocols considered for the implementation of the Platmarisc project (including REST, XML-
RPC, RPC, SOAP, JSON-RPC, GraphQL, HTTP POST, WebSockets, and MQTT).

1. Introduction
Software interfaces are a key element in the development of complex software applications involving
multiple systems and services. They allow connection and communication between different system
components, regardless of the platform, programming language or hardware they are running on. This
makes the development of applications and services easier and more efficient, as it allows the
integration of already existing components instead of creating a new solution from scratch.

The protocols and technologies that enable this communication are varied and tailored to the
specific needs of applications. These can be protocols based on XML, JSON, HTTP or specialized
protocols for real-time communication such as WebSockets or MQTT. There are also various
frameworks and libraries that facilitate the creation and implementation of these protocols within
applications and services.

As technology continues to evolve, we expect the use and development of software interfaces to
become even more important. They will become increasingly complex and efficient, allowing
applications and services to interact with more systems and services than ever before. We will also
likely see an increase in the use of specialized protocols for IoT devices and other applications that
require real-time communication.

In general, software interfaces play a crucial role in the development of modern software
applications and are essential to enable efficient and scalable communication between various system
components. By using the right protocols and technologies, developers can create powerful and
efficient solutions that meet the specific needs of applications and services.

mailto:simona.diaconu@coremar.ro
mailto:marian.cata@anmb.ro
mailto:anca.atodiresei@anmb.ro

In this article, we'll examine the pros and cons of several communication protocols used in
software interfaces, including REST, XML-RPC, RPC, SOAP, JSON-RPC, GraphQL, HTTP POST,
WebSockets, MQTT, and the like.

2. XML-based protocols
XML-based protocols have been widely used in the past to enable communication between various
applications and services. However, in recent years they have been largely replaced by other lighter
and more efficient protocols such as REST and JSON.

Although XML-based protocols are not as popular as they once were, they can still be useful in
certain situations, such as when you need to call a method from another system that uses one of these
protocols. Also, some older or more complex applications may still use these protocols for
communication.

In general, the use of XML-based protocols can be justified in some situations, but in most cases
the use of other lighter and more efficient protocols such as REST and JSON is recommended. The
following subsections outline the main advantages and disadvantages of the major XML-based
protocols, XML-RPC and SOAP,

2.1. XML-RPC
XML-RPC (Remote Procedure Call) is a protocol that allows a remote method to be called via an

HTTP call to an XML-RPC server [1][2]. This protocol is simple and easy to implement, but it is not
as efficient as other protocols due to the large amount of XML code required to transmit the
information [3][4][5][6].

Benefits of XML-RPC include:
• XML-RPC can be used in a variety of programming languages because XML is a standard format

that is supported by most programming languages.
• XML-RPC is a simple protocol that does not require much configuration or advanced knowledge

to implement.
• XML-RPC can be used to make procedure calls on a server, which makes it ideal for creating

applications that need to access various resources on a server.
Disadvantages of XML-RPC include:
• XML-RPC uses XML, which is a rather verbose format and can be difficult to read and process

manually.
• XML-RPC is not as flexible as other protocols such as REST because it relies on procedure calls

and does not allow for a resource-oriented approach.
• XML-RPC may be less efficient than other protocols such as JSON-RPC because the XML

format is larger and more complex than the JSON format.

2.2. SOAP
SOAP (Simple Object Access Protocol) is another XML-based protocol that allows remote methods to
be called via an HTTP call to a SOAP server [7]. This is a more complex and powerful protocol than
XML-RPC, but it is also more cumbersome due to the large amount of XML code required to transmit
the information. Also, SOAP is less flexible than REST or JSON protocols because it is stricter in
terms of message format and allowed operations.

Benefits of SOAP include:
• Interoperability: SOAP is a platform and language independent protocol so applications can

communicate in a standardized and interoperable way.
• Security: SOAP provides multiple levels of security, such as encryption and authentication, to

protect transmitted data.

• Flexibility: SOAP allows the use of a large number of data types and complex operations to
perform various functions.

• Transaction Support: The SOAP protocol provides transaction support, thereby allowing
applications to work with multiple resources and maintain data consistency.

Disadvantages of SOAP include:
• Complexity: SOAP is a complex protocol and can be difficult to understand and implement.
• Performance: Using the SOAP protocol can affect system performance because there is an

overload of network resources and a large amount of data sent.
• File size: SOAP files can be quite large, which can lead to slow response times and network

congestion.
• Compatibility issues: Using different versions of the SOAP protocol between applications can

lead to compatibility issues and may require additional development and testing efforts to resolve
them.

3. JSON-based protocols
JSON-based protocols are very popular due to their ease of use and small data sizes. JSON (JavaScript
Object Notation) is a lightweight and flexible data format that can be used in a variety of programming
languages.

In general, JSON-based protocols are currently preferred due to their ease of use and small data
sizes. They can be used in a variety of applications and are very useful for developing APIs. However,
it is important to choose the right protocol based on the specific needs of the application and the
desired level of performance.

The following subsections outline the main advantages and disadvantages of the major JSON-
based protocols, JSON-RPC and GraphQL,

3.1. JSON-RPC
JSON-RPC is a client-server protocol that uses the JSON format to make procedure calls to a server
[8][9]. This protocol is easy to use and does not require much configuration. Another advantage of
JSON-RPC is that it can be used in a variety of programming languages, including web, mobile, and
desktop [10].

The advantages of the JSON-RPC protocol are:
• Ease of use: JSON-RPC is easy to use and can be implemented in a variety of programming

languages.
• Small transmitted data sizes: JSON is a compact and easily parsed data format, which makes data

transmission efficient and fast.
• Does not require much configuration: The JSON-RPC protocol does not require much

configuration and can be used quickly and easily.
• Compatibility: JSON-RPC can be used in a variety of programming languages and is compatible

with many platforms and technologies.
The disadvantages of the JSON-RPC protocol are:
• Lack of security: The JSON-RPC protocol lacks built-in security functionality, which can be a

problem for applications that transmit sensitive data.
• Data structure limitations: JSON-RPC works best with relatively simple data, and more complex

data structure can be difficult to transmit and manage.
• Lack of standardization: There are several different implementations of the JSON-RPC protocol,

which can lead to compatibility issues between different applications and platforms that use the
protocol.

3.2. GraphQL

GraphQL is another popular JSON-based protocol [11][12]. This is a query protocol that allows the
client to define exactly what data it needs and receive only that data [13][14]. GraphQL can be used in
a variety of programming languages and is particularly used to create APIs [15][16][17]. Another
benefit of GraphQL is that it allows developers to avoid data overload and improve application
performance by reducing the number of server calls [18][22][19][23].

Advantages of the GraphQL protocol include:
• Flexibility and query power: GraphQL offers great flexibility in terms of querying data, allowing

the client to ask for only the data it needs without having to receive all the data about a resource.
• Performance: Because GraphQL can be used to request only the necessary data, this protocol can

reduce bandwidth and improve application performance.
• Automatic documentation: In GraphQL, documentation is automatically generated based on the

defined schema. This makes it easier for developers who want to use the schema because they don't
have to manually generate the documentation.

• Compatibility with multiple platforms and programming languages: GraphQL can be used with a
variety of programming languages and platforms, making it easy to implement in a wide range of
scenarios.

• Scalability: GraphQL can be used to improve application scalability by allowing data to be
distributed across multiple servers and processed separately.

Disadvantages of the GraphQL protocol include:
• Learning curve: For developers who have not used GraphQL before, it may be necessary to learn

a new set of concepts and syntax.
• Implementation complexity: GraphQL implementation can be more complex than other protocols

such as REST.
• Security: Due to the great flexibility offered by GraphQL, it is important to take security measures

to protect sensitive data.
• Dependency management: Because of the flexibility offered by GraphQL, it can be difficult to

manage dependencies between different resources and ensure proper interconnectivity between them.

4. HTTP-based protocols
HTTP-based protocols are very popular and used worldwide because HTTP is a standard protocol
used for communication between servers and clients on the Internet.

In general, HTTP-based protocols are preferred due to the popularity and standardization of this
protocol. They are easy to use and can be implemented in a variety of programming languages and
platforms. However, it is important to choose the right protocol based on the specific needs of the
application and the desired level of performance.

Two of the most popular HTTP-based protocols are REST and HTTP POST. The following
subsections outlines their advantages and disadvantages.

4.1. REST
REST (Representational State Transfer) is a protocol that uses standard HTTP methods such as GET,
POST, PUT, and DELETE to perform CRUD (Create, Read, Update, and Delete) operations on
resources [20][23][21]. REST is an easy-to-use protocol that can be implemented in a variety of
programming languages and platforms [22][23][24][25][26]. Another advantage of REST is that it is
flexible and can be used to build APIs for different types of applications, such as web or mobile
applications [27][28].

The advantages of the REST protocol include:
• Scalability: REST is highly scalable and can handle a large number of requests without affecting

system performance.

• Interoperability: REST can be used in a variety of programming languages and platforms, making
it a very versatile protocol.

• Ease of use: REST is easy to understand and use, thanks to the use of standard HTTP methods
such as GET, POST, PUT and DELETE.

• Flexibility: REST can be used in a variety of scenarios, from creating simple APIs to creating
complex applications.

• Cacheable: REST allows users to store resources locally to reduce load time.
• Security: REST provides a variety of security options, including authentication and authorization.
Disadvantages of the REST protocol include:
• Complexity: REST can be complex in certain scenarios, especially when it comes to building

complex applications.
• Lack of a standard: REST does not have a defined standard and its implementation may vary from

application to application.
• Limited performance: In the case of requests with a lot of data, the performance of the REST

protocol can be limited.
• Lack of functionality: REST focuses more on resources rather than actions, which means it is not

suitable for all scenarios.
• Vulnerability to attacks: REST can be vulnerable to some attacks, such as Cross-Site Request

Forgery (CSRF) or Cross-Site Scripting (XSS) attacks.

4.2. HTTP POST
HTTP POST is another HTTP-based protocol that is used to send data from the client to the server.
This protocol is mainly used to send data in an HTML form or to send data via an XMLHttpRequest
object in web applications. It is a simple protocol and can be used in a variety of scenarios [25][29]
[30].

Benefits:
• The HTTP POST (form data) protocol is easy to use and does not require much technical

knowledge to implement.
• This protocol is supported by most web servers and can be used in a variety of scenarios.
• It allows sending a large amount of data because the data is sent through the body of the HTTP

request.
Disadvantages:
• The HTTP POST (form data) protocol is not ideal for sending sensitive data because the data is

transmitted in clear text and can be intercepted by an attacker.
• This protocol is not optimal for sending large files as it may be blocked by servers that have file

size limits.
• Using the HTTP POST (form data) protocol can be slower than other protocols because the entire

body of the HTTP request must be sent to the server.

5. Protocols for real-time communication
Real-time communication protocols are essential in many modern applications that require two-way
communication between client and server in real time. Such apps include multiplayer games, chat
apps, monitoring apps and more.

In general, protocols for real-time communication are essential in many modern applications and
must be considered when designing an application that requires two-way real-time communication
[31][29][30]. The following subsections describe Websockets and MQTT, two protocols which are
preferred by software developers whenever real-time communication is considered for an application.

5.1. WebSockets

WebSockets is one of the most popular protocols for real-time communication. It allows a
persistent connection between the client and the server, which means that the client and the server can
communicate in real time over this connection. WebSockets is a bandwidth-efficient protocol and can
be used in a variety of scenarios, including multiplayer games, chat applications, and monitoring
applications [32][29][30][33].

Advantages of the WebSockets protocol:
• Two-way real-time communication: WebSockets enable real-time two-way communication

between client and server, thus enabling the creation of complex applications such as multiplayer
games or real-time collaboration applications.

• Bandwidth efficient: The WebSockets protocol is bandwidth efficient because it allows persistent
communication between client and server without the need to send HTTP headers with each request
and response.

• Improved security: WebSockets allows the use of SSL/TLS encrypted connections, thus enabling
secure communication between client and server.

Disadvantages of the WebSockets protocol:
• Firewalls: WebSockets can be blocked by firewalls, which can prevent users from accessing

applications that use this protocol.
• Not optimized for transferring large files: The WebSockets protocol is not optimized for

transferring large files because they must be broken into smaller pieces and sent as messages.
• Complexity: The WebSockets protocol can be more complex than other protocols because it

requires a special implementation on the server to enable real-time two-way communication.

5.2. MQTT
MQTT is another popular protocol for real-time communication. It is mainly used to send messages

between IoT (Internet of Things) devices. MQTT is a very bandwidth-efficient protocol because it uses
a publish-subscribe model, meaning that messages are only sent to clients that subscribe to those
messages. This protocol can be used in a variety of scenarios, including monitoring and controlling
IoT devices [32][33][29][30][33].

The advantages of the MQTT protocol include:
• Power efficiency: MQTT was designed for use in IoT devices with limited power resources. This

protocol consumes little power and can be used on batteries for long periods of time.
• Bandwidth efficiency: MQTT uses a publish/subscribe model, which means that only devices that

are interested in certain messages receive those messages. This makes MQTT a very bandwidth
efficient protocol.

• Scalability: MQTT is designed to be highly scalable. This protocol can be used in systems with
thousands or even millions of connected devices.

• Reliability: MQTT has a QoS (Quality of Service) mechanism that guarantees the delivery of
messages under reliable conditions. This feature makes MQTT an ideal protocol for reliability-critical
applications.

• Security: MQTT supports message authentication and encryption, which makes this protocol safe
to use.

Disadvantages of the MQTT protocol include:
• Complexity: MQTT is a fairly complex protocol that can be difficult for inexperienced users to

understand.
• Functionality limitations: MQTT is a simple protocol and does not have the same capabilities as

other protocols such as HTTP. In certain scenarios, these limitations can be a problem.
• Latency: Because of the way the publish/subscribe model works, there is sometimes some delay

between when a device publishes a message and when other subscribed devices receive that message.

6. Conclusions
In this article, we have examined several protocols used in software interfaces, analyzing their
advantages and disadvantages. XML-based protocols are more complex, but can be used to connect
different software systems. JSON-based protocols are easy to use and can be used to perform client-
server and query interactions. HTTP-based protocols are very popular and easy to implement, and
real-time communication protocols are especially used for chat applications, multiplayer games, and
IoT devices.

In conclusion, the choice of a protocol largely depends on the specific requirements of the
application and the ability to implement the protocol in a particular programming language or
platform. In general, the best options are those that offer a combination of ease of use, efficiency, and
scalability.

Acknowledgements: This work was supported by grant no. 383/390059/04.10.2021, project cod ID /
Cod MySMIS: 120201: Innovative integrated maritime platform for real-time intervention through
simulated disaster risk management assistance in coastal and port areas – PLATMARISC.

References
[1] Cerami, Ethan, "Web services essentials: distributed applications with XML-RPC, SOAP, UDDI &
WSDL", " O'Reilly Media, Inc.", 2002
[2] Dissanaike, Suru; Wijkman, Pierre; Wijkman, Mitra, "Utilizing XML-RPC or SOAP on an embedded
system", in 24th International Conference on Distributed Computing Systems Workshops, 2004.
Proceedings., pp. 438-440, IEEE, 2004
[3] Bagci, Hakan; Kara, Ahmet, "A Lightweight and High Performance Remote Procedure Call
Framework for Cross Platform Communication.", in ICSOFT-EA, pp. 117-124, 2016
[4] Hsu, I-Ching, "XML-based information fusion architecture based on cloud computing ecosystem",
in Comput. Mater. Continua, vol. 61, no. 3, pp. 929-950, 2019
[5] Kiraly, Sandor; Szekely, Szilveszter, "Analysing RPC and Testing the Performance of Solutions", in
Informatica, vol. 42, no. 4, 2018
[6] Királya, Sándor; Székelyb, Szilveszter; Királyc, Roland; Ballad, Tamás, "Some aspects of using RPC",
[7] Radhakrishna, Shraddha; Nachamai, M, "Performance inquisition of web services using SOAP UI
and JMeter", in 2017 IEEE International Conference on Current Trends in Advanced Computing
(ICCTAC), pp. 1-5, IEEE, 2017
[8] Dwi, YB; Estri, Shinta, "Multi-Tier Model with JSON-RPC in Telemedicine Devices Authentication
and Authorization Protocol", in 2021 7th International Conference on Engineering, Applied Sciences
and Technology (ICEAST),
[9] JSON-RPC Working Group, "Json-rpc",
[10] Veldkamp, LS; Olsthoorn, Mitchell; Panichella, A, "Grammar-Based Evolutionary Fuzzing for
JSON-RPC APIs", in The 16th International Workshop on Search-Based and Fuzz Testing,
[11] Hartig, Olaf; Pérez, Jorge, "An initial analysis of Facebook's GraphQL language",
[12] Wieruch, Robin, "The Road to GraphQL", in Independently published,
[13] Hartig, Olaf; Pérez, Jorge, "Semantics and complexity of GraphQL", in Proceedings of the 2018
World Wide Web Conference,
[14] Bryant, Mike, "GraphQL for archival metadata: An overview of the EHRI GraphQL API", in 2017
IEEE International Conference on Big Data (Big Data),
[15] Quiña-Mera, Antonio; Fernandez, Pablo; García, José María; Ruiz-Cortés, Antonio, "GraphQL: A
Systematic Mapping Study", in ACM Computing Surveys,

[16] Wittern, Erik; Cha, Alan; Davis, James C; Baudart, Guillaume; Mandel, Louis, "An empirical study
of GraphQL schemas", in Service-Oriented Computing: 17th International Conference, ICSOC 2019,
Toulouse, France, October 28–31, 2019, Proceedings 17,
[17] Mukhiya, Suresh Kumar; Rabbi, Fazle; Pun, Violet Ka I; Rutle, Adrian; Lamo, Yngve, "A GraphQL
approach to healthcare information exchange with HL7 FHIR", in Procedia Computer Science,
[18] Taelman, Ruben; Vander Sande, Miel; Verborgh, Ruben, "GraphQL-LD: linked data querying with
GraphQL", in ISWC2018, the 17th International Semantic Web Conference,
[19] Brito, Gleison; Mombach, Thais; Valente, Marco Tulio, "Migrating to GraphQL: A practical
assessment", in 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER),
[20] Masse, Mark, "REST API design rulebook: designing consistent RESTful web service interfaces",
O'Reilly Media, Inc., 2011
[21] Haupt, Florian; Leymann, Frank; Scherer, Anton; Vukojevic-Haupt, Karolina, "A framework for
the structural analysis of REST APIs", in 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 55-58, IEEE, 2017
[22] Brito, Gleison; Valente, Marco Tulio, "REST vs GraphQL: A controlled experiment", in 2020 IEEE
international conference on software architecture (ICSA),
[23] Seabra, Matheus; Nazário, Marcos Felipe; Pinto, Gustavo, "REST or GraphQL? A performance
comparative study", in Proceedings of the XIII Brazilian Symposium on Software Components,
Architectures, and Reuse,
[24] Miller, Mark A; Schwartz, Terri; Pickett, Brett E; He, Sherry; Klem, Edward B; Scheuermann,
Richard H; Passarotti, Maria; Kaufman, Seth; O'Leary, Maureen A, "A RESTful API for access to
phylogenetic tools via the CIPRES science gateway", in Evolutionary Bioinformatics, vol. 11, pp. EBO.
S21501, SAGE Publications Sage UK: London, England, 2015
[25] Chen, Xianjun; Ji, Zhoupeng; Fan, Yu; Zhan, Yongsong, "Restful API architecture based on Laravel
framework", in Journal of Physics: Conference Series, vol. 910, no. 1, pp. 12016, IOP Publishing, 2017
[26] Rodríguez, Carlos; et. al, "REST APIs: A large-scale analysis of compliance with principles and best
practices", in Web Engineering: 16th International Conference, ICWE 2016, Lugano, Switzerland, June
6-9, 2016. Proceedings 16, pp. 21-39, Springer, 2016
[27] Sohan, SM; Maurer, Frank; Anslow, Craig; Robillard, Martin P, "A study of the effectiveness of
usage examples in REST API documentation", in 2017 IEEE symposium on visual languages and
human-centric computing (VL/HCC), pp. 53-61, IEEE, 2017
[28] Li, Li; Chou, Wu, "Design and describe REST API without violating REST: A Petri net based
approach", in 2011 IEEE International Conference on Web Services, pp. 508-515, IEEE, 2011
[29] Kaur, Simran; Khanna, Vandana, "Implementation and Comparison of MQTT, WebSocket, and
HTTP Protocols for Smart Room IoT Application in Node-RED", in IoT for Sustainable Smart Cities and
Society, pp. 165-193, Springer, 2022
[30] Gemirter, Cavide Balkı; Şenturca, Çağatay; Baydere, Şebnem, "A comparative evaluation of
AMQP, MQTT and HTTP protocols using real-time public smart city data", in 2021 6th International
Conference on Computer Science and Engineering (UBMK), pp. 542-547, IEEE, 2021
[31] Gupta, Poonam, "A survey of application layer protocols for Internet of Things", in 2021
International Conference on Communication information and Computing Technology (ICCICT), pp. 1-
6, IEEE, 2021
[32] Silva, Diego RC; Oliveira, Guilherme MB; Silva, Ivanovitch; Ferrari, Paolo; Sisinni, Emiliano,
"Latency evaluation for MQTT and WebSocket Protocols: an Industry 4.0 perspective", in 2018 IEEE
Symposium on Computers and Communications (ISCC), pp. 01233-01238, IEEE, 2018
[33] Werlinder, Marcus, "Comparing the scalability of MQTT and WebSocket communication
protocols using Amazon Web Services", 2020

	71.pdf (p.1)
	71.pdf (p.2-9)

