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Abstract. The Photovoltaic (PV) systems are more present in the communities’ landscape 

providing energy to the consumers, public buildings, municipalities, and industry, smoothen 

the electricity prices fluctuations and reducing the dependency on the public grid. They are 

reliable energy sources for boats and ships as some of the PV technologies are flexible and can 

be located on plane surfaces or even on the water surface especially when the ships dock at sea 

or at the seashore. However, the operation of PV systems depends on several weather factors, 

and it is important to predict their operation to manage the controllable load. Furthermore, it is 

essential to know if the PV systems generate in surplus or additional energy is required to 

cover the load. The surplus can be offered for local trading or aggregated and offered for 

centralized markets. Therefore, in this paper, we aim to predict the output of the PV systems 

using machine learning algorithms and recurrent neural networks (RNN), especially a 

multivariate Long Short-Term Memory (LSTM) model. Data extraction, feature engineering, 

and forecast of the PV power are depicted and the simulations are performed using 4 PV 

systems located in Constanta County. The results are assessed with prediction performance 

metrics such as RMSE, MAPE, etc. 

Keywords: PV systems, forecast PV power, Long Short-Term Memory (LSTM), recurrent 

neural networks (RNN) 

1.  Introduction 

The PV systems have started to become more frequent in the rural and urban communities as the 

technologies are getting cheaper [1]. Subsidies are given to the residential consumers to acquire up to 

3kWh of PV systems per household and the top of the buildings (including blocks) will be the next 

target according to the Romanian decision makers. Currently, in Romania 2-3% of the load is covered 

by PV systems and 10-12% by the Wind Power Plants (WPP) located mainly in Dobrogea area. The 

total power for WPP sums up to 3,000 MW, dispatchable PV systems installed power is up to 612 

MW and non-dispatchable PV systems installed power is around 780 MW. The PV systems will be 

installed on the blocks top roofs and their output will be shared among the apartments. Value sharing 

methods are essential to fairly share the cost and revenue the PV systems may bring as in case the load 

is lower than PV generation, the surplus is injected into the grid [2]. The surplus can be aggregated by 

an aggregator and offered to a supplier or grid operator as flexibility or on the market. The main 

disadvantage is related to the gap between the PV operating hours (with maximum output at noon) and 

peak load that usually takes place in the evening when most inhabitants return home [3], [4]. 

Furthermore, the PV systems do not generate at night. Therefore, storage facilities are essential to 



 

 

 

 

 

 

mind the gap between PV output and peak load. Load optimization is also a solution to maximize the 

PV usage [5]. Mainly the PV operation depends on the weather parameters: cloud cover, solar 

irradiation, intrinsic characteristics of the panels, location and site properties (azimuth, tilt, etc.) [6]. 

PV forecast is usually performed for home energy management system [7] or building management 

system [8], [9]. Furthermore, PV systems administrators have to notify the output and the forecast is 

therefore essential to improve notifications to the market and grid operators and avoid balancing costs. 

Numerous prediction models have been developed such as stochastic, artificial neural networks, 

hybrid methods [10], [11], including systems with battery-based storage facilities [12]. 

Thus, in this paper we proposed a methodology in three steps that consists of data extraction using 

Node-RED, feature engineering and the 15-min forecast itself using several standout Machine 

Learning (ML) algorithms (such as Random Forest, extreme Gradient Boosting, Light Gradient 

Boosting), Deep Neural Networks (DNN) and RNN (LSTM, Gated Recurrent Unit). Furthermore, we 

implemented the methodology into a PV dashboard application. 

The paper is structured in several sections: introduction including related studies, methodology, 

results and conclusion. The simulations performed in this paper consider the input data of 4 PV 

systems with rated power between 0.5 and 2.97 MW, one located in Constanta County and three PV 

systems are situated in the North-West of Romania. In the next section, the proposed methodology 

steps will be depicted. 

2.  Methodology 

The methodology consists of three steps: data extraction, feature engineering, and forecast the PV 

power.  

2.1.  Step 1 – Data extraction  

The data sources consist of weather data collected from web API (Application Programming 

Interfaces), records of the PV power plants (inverters and smart meters) and records provided by the 

Distribution System Operator (DSO). Two different types of weather records are stored and related to 

the current conditions and forecasted values of the following parameters: temperature, cloud cover, 

humidity, wind speed and direction, ultraviolet index (UVI), pressure, dew point and precipitation. 

From the power plants, the readings of the inverters and the smart meters are collected at 15 minutes, 

preprocessed, and validated against missing values and outliers caused by errors. An extraction 

process automatically requests the data from these sources, transformed and stored them in a MySQL 

database. This process is implemented in Node-RED using Pythonshell nodes that run Python scripts 

to extract records from inverters, smart meters and weather API. The data is stored in a relational 

schema with json support due to the fact that the weather records are received as json documents.  

The initial input is formed by merging the weather data and the power plant readings: 

𝑋 = [𝑋𝑤, 𝑋𝑝𝑝]     (1) 

Where 𝑋𝑤 represents the weather records related to the previous and current conditions and 𝑋𝑝𝑝 

represents the power generated by the inverters measured by the smart meter or by the grid operator.  

2.2.  Step 2 – Feature engineering 

In this step, the initial input is prepared and enhanced with new attributes that model the PV 

generation. The factor with the greatest influence on generation is solar irradiation that can be 

determined from the cloud cover and pressure using the irradiance.campbell_norman method from the 

PVLIB Python library [13]. This method determined the three components of the solar irradiance (DNI 

- Direct Normal Irradiance, DHI - Diffuse horizontal irradiance, GHI - Global Horizontal Irradiance) 

from the extraterrestrial flux (which by default has a value of 1367 W/m2), transmittance, and 

atmospheric pressure. Atmospheric transmittance is calculated based on the cloud cover using several 

approximations as described in [14]. The Effective Irradiance (𝐸𝐼) that is received by the PV panel 



 

 

 

 

 

 

depends on the tilt, azimuth, angle of incidence and albedo. It is calculated using the method 

PVSystem.sapm_effective_irradiance from the PVLIB library and it is added to the initial input. 

Additionally, some aggregated values of the generated power are added to the input 𝑋 to create a 

generation pattern under the following weather conditions: effective irradiance, UV index and Cloud 

Cover (CC). The new features represent the minimum, maximum, average and standard deviation of 

the generated power under the above-mentioned weather conditions:  

𝑋𝑤𝑎𝑔 = 𝑓𝑎𝑔(𝑋𝑤)| 𝑋𝑤 ∈ {𝐸𝐼, 𝑈𝑉𝐼, 𝐶𝐶}     (2) 

Where 𝑓𝑎𝑔 represents the aggregation function (minimum, maximum, average or standard 

deviation) over the training period (t).  

Also, to capture the power generated as a function of time, another four features are determined 

using the aggregation functions over each time interval (t) that corresponds to the quarter of an hour: 

 𝑋𝑡𝑎𝑔 = 𝑓𝑎𝑔(𝑡)| 𝑡 = 1: 96̅̅ ̅̅ ̅̅        (3) 

The last feature that is computed represent a combination of the effective irradiance and cloud 

cover that aims to strengthen the correlation between the generated power and these weather 

influencers: 

 𝑋𝑐𝑜𝑚𝑏𝑖 = 𝑓𝑐(𝐸𝐼, 𝐶𝐶)     (4) 

Where 𝑓𝑐 represents the concatenation function of the EI with CC. 

The features are added to the initial input, and it becomes as following: 

𝑋 = [𝑋𝑤, 𝑋𝑝𝑝, 𝑋𝑤𝑎𝑔, 𝑋𝑡𝑎𝑔, 𝑋𝑐𝑜𝑚𝑏𝑖]    (5) 

The output (target) of the ML algorithm is the generated power (𝑃) in kW, so 𝑦 = 𝑃. 

To prepare the input and output for the ML training, a typical stage of preparation is applied that 

consists in standardization of the values and splitting of the data set into train (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) and test 

(𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡) sets, allocating 80% of the values for training and 20% for testing.  

2.3.  Step 3 – Forecast the PV power 

For this step the following algorithms are used: Gradient Boosting (GB), Random Forest (RF), 

XGBoost (XGB), Light Gradient Boosting (LGB), Voting Regressor (VR), Deep Neural Network 

(DNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The hyperparameters 

of the GB, RF, XGB and LGB algorithms are similar, and their optimal values are obtained after a 

tuning process using GridSearchCV from scikit-learn library in Python. Therefore, the number of 

estimators is set to 200, maximum depth is between 5 and 10, learning rate is 0.05. The VR model is 

composed of three algorithms: GB, RF and XGB. The DNN architecture is obtained after the tuning 

process using validation curves while testing several configurations: three hidden layers with (128, 64, 

64) neurons, activation function is set to the rectified linear unit (ReLU), optimizer is Adam with a 

learning rate of 0.001. After the first hidden layer a Dropout layer is added with dropout rate set to 0.2.  

The first six methods do not need any further preparation of the input and are trained and tested on 

the corresponding data sets. For LSTM and GRU, the input and target data sets need to be transformed 

into 3D shapes with dimension formed by n features, m samples and s intervals corresponding to 96 

daily intervals.  

𝑋3𝐷 ← 𝑋. 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝑚, 96, 𝑛); 𝑦3𝐷 ← 𝑦. 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑚, 96)  (6) 

For LSTM, two variants are configured as follows: LSTM3D with two LSTM layers with (128, 64) 

neurons followed by a Dropout layer with a rate of 0.2 and a Dense layer with 64 neurons; LSTMR 

with an initial LSTM layer with 128 neurons followed by a Repeat Vector layer and another LSTM 

layer with 64 neurons. A Dropout layer and a Dense layer are added with the same hyperparameters as 

LSTM3D. The GRU model is similar to LSTM3D, except for the fact that the LSTM layers are 

replaced by the GRU layers with the same hyperparameters. For all the recurrent models the optimizer 

is Adam with a learning rate of 0.001 and activation function is ReLU.  

The models are trained on the last three months and forecast the PV output for the next 72 hours 

based on the weather forecast extracted from the API sources. The final PV forecast is obtained as an 

average of the predictions (𝑃𝑉�̂�) provided by all ML algorithms. Therefore, the PV output (𝑃�̂�) is: 



 

 

 

 

 

 

𝑃�̂� =
∑ 𝑃𝑉�̂�𝑚

𝑀
     (7) 

Where 𝑀 is the total number of models (𝑚). 

The steps of the methodology are represented in Figure 1. 

 

 

Figure 1. Steps of the proposed methodology for PV forecast. 

3.  Implementation and deployment of the PV Dashboard 

The proposed methodology is implemented in Python, using Flask which is a Web Server Gateway 

Interface (WSGI) framework for web development. The web application, PV Dashboard consists in 

two sections for monitoring the PV generation and for forecasting the PV power. Each section 

provides tabular and graphical representations of the inverter and smart-meters readings and predicted 

power using ML algorithms. For example, in Figure 2 the forecasting section where several 

estimations are displayed compared with the generated power is shown. The following estimations are 

compared with the actual generation: Power plant forecast - obtained as an average of the predictions 

provided by all ML algorithms, including DNN, LSTM and GRU, Average forecast – obtained as an 

average of the ML models without DNN, LSTM and GRU, and three estimations obtained by 
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calculating the PV power with PVLIB library only for single weather source: OpenWeather1, Storm1 

and Storm 2 respectively. Since Storm 1 and Storm 2 data are extracted from the API provided by 

Stormglass2, their values may coincide for some locations depending on the location of the weather 

stations.  

 

Figure 2. Forecasting section – comparison between generation and forecast. 

As can be noticed from Figure 2, the estimations calculated directly from the weather data are far 

from the generated power, the closest values are obtained by the Power plant forecast and the Average 

forecast using ML models.  

The tabular representation allows user to export the data in excel or csv files to be send to the DSO 

as daily notifications regarding the predicted power. In the following section, the results of the 

simulations using 4 PV systems with the installed power between 0.5 and 2.97 MW located one in 

Constanta County and the other three in the N-V part of Romania are depicted. Several metrics for the 

assessment of the prediction performance are calculated. 

4. Results 

The simulations were performed on four power plants in Romania with rated power between 0.5 and 

2.97 MW. The first PV is located in Constanta County and has 0.5 MW installed power with 31 

inverters. The data is collected directly from the inverters and validated with the DSO records. The 

other three PV systems are situated in the North-West of Romania and have between 2 and 2.97 MW 

 
1 https://openweathermap.org/api 
2 https://stormglass.io/ 



 

 

 

 

 

 

installed power. The data is collected from the smart meters that measure the entire PV generation and 

are validated with the DSO records. The ML algorithms are trained in the second step for each PV, 

and the results are centralized in Table 1, being averaged over the entire year 2022. The metrics used 

to evaluate the results are the following: Root-Mean Squared Error (RMSE), coefficient of 

determination (𝑅2) and Mean Absolute Percentage Error (MAPE).  

Table 1. The results obtained in the training step, 01 January 2022 – 31 December 2022. 

PV RMSE 𝐑𝟐 MAPE 

PV1 – 0.5 MW 17.3 0.98 0.15 

PV2 – 2.6 MW 58 0.97 0.59 

PV3 – 2.97 MW 62 0.96 0.67 

PV4 – 2.1 MW 87 0.92 0.88 

After training and testing the models, the PV Dashboard was deployed into a testing environment 

and evaluated for two months, from the 1st of January 2023 to 28th of February 2023. The results are 

centralized in Table 2.  

Table 2. The results obtained during the evaluation between 01 January 2023 – 28 February 2023. 

PV RMSE 𝐑𝟐 MAPE 

PV1 – 0.5 MW 21.1 0.95 0.19 

PV2 – 2.6 MW 82.8 0.91 0.89 

PV3 – 2.97 MW 86.04 0.90 0.92 

PV4 – 2.1 MW  98.54 0.86 0.99 

As it can be noticed, during the evaluation interval, the results proved that the algorithms are robust 

and that the overfitting is avoided. The algorithms are analysed, and their individual estimations are 

compared. In Figure 3 a comparison between the generated power (blue curve), averaged forecast 

(𝑃�̂�) and the estimations obtained by DNN (green), LSTM3D (purple curve - P_LSTM), LSTMR 

(light blue) and GRU (orange curve) for PPV2 are shown for two consecutive days (end of February 

and beginning of March 2022).  

  

Figure 3. PV forecast using several ML models on two consecutive days for PPV2. 

                    

 

   

   

   

   

   

                                

       

                   

    

  

                    

 

   

    

    

    

                                

       

                   

    

  



 

 

 

 

 

 

The differences between the estimations obtained by the ML models are small, demonstrating that 

the algorithms are reliable and that they can be used by the PPV’s administrators to set up the 

notifications for the DSO, bid the forecasted quantities and manage the photovoltaic power plants.  

5. Conclusion 

There are numerous cases when PV forecast is important: for microgrids, for remoted areas or even for 

transportation, including sea transportation, for residential, commercial and industrial consumers, for 

PC systems administrators or owners to create notifications and bids, etc. The purpose of this paper is 

to propose a methodology to predict the PV output. The proposed methodology proved to be robust. 

Its application is already deployed in real operation. The simulations were performed using 4 PV 

systems with installed power between 0.5 and 2.97MW, one located in Constanta County and three 

located in the N-W part of Romania. 

The implementation of the proposed methodology is performed as PV dashboard that offers tabular 

and graphical representation of the results. It monitors the operation of the PV systems and provides 

15-min forecast for the next 72 hours. 
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