

Volume XXV 2022

ISSUE no.2

MBNA Publishing House Constanta 2022

doi: 10.21279/1454-864X-22-I2-017
SBNA© 2022. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER • OPEN ACCESS

Design considerations for a generic database for

dynamic maritime parameters

 To cite this article: A. Atodiresei, M. Cață and A. Băutu, Scientific Bulletin of Naval Academy, Vol.

XXV 2022, pg. 177-183.

Submitted: 08.03.2023

Revised: 15.03.2023

Accepted: 20.03.2023

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

http://www.anmb.ro/

Design considerations for a generic database for dynamic

maritime parameters

Anca Atodiresei
1
, Marian Cață

2
, and Andrei Băutu

3

1
 “Mircea cel Bătrân” Naval Academy, Romania, anca.atodiresei@anmb.ro

2
 “Mircea cel Bătrân” Naval Academy, Romania, marian.cata@anmb.ro

3
 “Mircea cel Bătrân” Naval Academy, Romania, andrei.bautu@anmb.ro

Abstract. The advancement of technology has made the maritime industry more complex,

leading to an increase in the need for effective management systems. In this research paper, we

present an analysis of the design considerations for a generic database for dynamic maritime

parameters. The objective is to develop a database system that can handle a wide range of

maritime parameters and be used in different applications. The paper covers aspects such as

data modelling, data storage, and performance. While we focus on meteorological parameters,

the proposed database system is designed to be flexible and efficient, allowing for easy

integration with other systems in the maritime industry.

1. Introduction

Databases are a fundamental part of any modern computer system. Database management systems

(DBMS) are specialized software that play a crucial role, because they enable the creation and

manipulation of databases. DBMS are typically categorized based on their data models, which

determine the structure in which data is stored. Although relational databases, which emerged in the

1970s, have been the leading solution for many years, newer models have also emerged, such as

object-oriented (OO), NoSQL (Not Only SQL), and NewSQL databases. OO databases have an

advantage in that they are compatible with OO programming languages, thereby avoiding mismatches

between relational databases and programming languages. NoSQL databases prioritize flexibility and

horizontal scalability over the rigidity of relational databases. Lastly, NewSQL databases merge the

benefits of both relational and NoSQL databases.

To state the database design problem, one must design the logical and physical structure of a

database within a particular database management system or paradigm (relational, OO, NoSQL, etc).

This design must ensure that the database contains all necessary user information and facilitates

efficient behavior across the entire computer system for all users, as well as during application

processes and user interaction [1].

2. Database models

2.1. The relational database model

Beginning in the 1970s, the relational database model, first proposed by E.F. Codd in [2], has been

increasingly utilized in database modeling. Codd's definition of the "relational model" included the use

of tables composed of rows (known as records) and columns (known as attributes) to store data. This

model employs connections between records in tables to represent data relationships.

mailto:anca.atodiresei@anmb.ro
mailto:marian.cata@anmb.ro
mailto:andrei.bautu@anmb.ro

A relational database comprises data elements arranged in tables with defined structures, providing

diverse methods for accessing or reconstructing data. Tables, referred to as relations, consist of

columns representing various data categories, and each row stores a distinct data instance for the

relevant category. The database creation process involves validating the data's potential values and

applying constraints. The tables' interdependence creates a "relationship," rendering the model flexible

for multiple perspectives of the same database. Therefore, this approach entails minimal assumptions

about the database's data retrieval methods.

Relational databases offer several advantages such as having the majority of information stored

within the database itself instead of the application, making it self-documenting. Additionally, it

allows for effortless manipulation of data by adding, updating, or deleting it. Furthermore, it provides

benefits such as data summarization, retrieval, and reporting. The structure of the database is

predictable as it is organized into interconnected tables in a tabular form. Finally, any required

alterations to the database schema are straightforward to implement.

Almost all database management systems have implemented the relational model, using SQL as the

standardized tool for querying and manipulating these databases. Researchers have also created

models related to the relational model or that enable relational models to be derived from higher

analytic models, using mathematical theories similar to those used by Codd. An example of such a

model is the elementary mathematical model of data (MMED), which was developed by Romanian

researcher Christian Mancaș [3], [4], [5], [6]. This model can convert MMED schemes into MRD

schemes and E-R diagrams while providing additional tools for validation and control.

Relational databases, despite their widespread use, have various disadvantages. These include a

lack of high scalability, as beyond a certain point, the database needs to be distributed which can cause

significant synchronization issues. The storage of data in tables can also lead to increased complexity

if the data cannot be easily encapsulated. Additionally, many of the features offered by relational

databases are unused, which raises costs and complexity without providing benefits. SQL, the

language used by relational databases, is designed for structured data and can become complicated

when working with unstructured data. Finally, when working with large amounts of data, the database

needs to be partitioned across multiple servers, which can be challenging when joining tables on

distributed servers.

2.2. Other database models

Due to the limitations of the relational database model, over the past decades, new types of database

models have emerged, particularly the NoSQL models of databases. Within this family of databases,

there are specific models such as document-based and graph-based databases, among others. Each of

these models can be more suitable for specific types of applications than the relational model. Some of

the types of NoSQL models are:

- Column-based databases store data in columns rather than rows, making them more efficient than

row-oriented databases for updating or inserting new values for a column across multiple rows.

- Key-Value stores allow data to be stored without a fixed data model, where data consists of a key

represented by a string and associated data that can be any programming language primitive or object.

- Document stores use a document as their basic storage structure, with each document represented

by a unique string key and encoded in a standard format such as XML or JSON.

- Object-oriented databases store data as objects, allowing for OOP features like inheritance and

reuse.

- Graph databases use graph data structures to represent data and allow for the extraction of

meaningful patterns by studying interconnections between nodes, edges, and properties.

- Grid and cloud databases use grid and cloud computing to manage distributed databases and

provide easy access to remote hardware and storage resources.

- XML databases store XML data as their fundamental storage format, and there are also hybrid

XML databases that combine XML storage with other database models.

Choosing the appropriate database model for a specific application is a significant consideration.

Presently, there appears to be a lack of systematic methods that consider the specific needs and

features of the sought application when selecting a database model. In [7], a structured approach to

selecting a database model is proposed by the authors. This approach takes into account several factors

such as data-related requirements, functional requirements, and non-functional requirements. The

method suggests the most suitable database models for the corresponding application based on these

factors.

2.3. Selection of appropriate database model(s)

The task of database designers is to select the most appropriate model for a specific application, from

the numerous database models currently available for use. This selection can be made through

different strategies, including the agenda-based strategy, which involves choosing a model based on

the latest trends and a desire to learn something new. Additionally, practitioners may opt for the

knowledge-based strategy, which relies on personal or organizational experience with previously used

databases. Finally, the exploration-based strategy entails selecting a database model based on problem

analysis, such as data analysis and objective analysis, to find the best DBMSs that suit the problem at

hand.

The third option may seem appealing, but it is unfortunately not widely utilized and lacks structure

or establishment. In [7], the authors present a technique for choosing a database model that prioritizes

user needs, encompassing data-related, functional, and non-functional requirements. The approach for

selecting database models accounts for various types of user requirements and is designed to be

implemented at the outset of database development to ensure that the model aligns with user needs.

The method involves the following steps:

1. Gather and specify data requirements and express them using a conceptual data model (eg using

UML class diagrams).

2. Gather and specify the functional requirements that are related to database operations, that is,

data retrieval and update operations (generally called queries).

3. Gather and specify the non-functional requirements that are related to the data requirements and

their queries.

4. Based on the above, consider dividing the conceptual data model into fragments, each of which

has different characteristics (different performance requirements and different consistency

requirements). The result of this step can be many more database models.

5. Select the most appropriate database model for each shard. The choice will be based on a

predefined general purpose profile of each database model. A predefined profile consists of a set of

non-functional properties associated with each database model.

3. Designing a generic database for dynamic maritime parameters

Our research was funded by the Platmarisc research project (project cod ID / Cod MySMIS: 120201).

Within the project, the first research activity aims to identify the components of the systems operating

in coastal areas and maritime ports of the Black Sea, with roles in the generation of disaster risks. The

project teams will also identify the main dynamic parameters that are required to simulate such

systems and disaster scenarios within integrated maritime simulators.

Within the next activities, the values of these parameters will be periodically measured (through

various sensors), transmitted (through dedicated communication channels), and stored (in the database

created by database experts). This data will be used in the implementation of many activities of the

project. Among the parameters identified, which are of interest in the modeling and simulation

processes, the research team identified the hydro-meteorological parameters from Table 1.

Table 1. Paragraph styles.

Parameter Unit of measure Description

dd ° Wind direction - average 10 min

ff m/s Wind speed - average 10 min

Hw m Wave height - visual

iRal -
Precipitation inclusion indicator

warning

ITU - Temperature index - ITU

Iw - Wind sensor indicator

L - Precipitation type

La ° Geographical latitude

Lo ° Geographical longitude

N - Nebulosity

Napa m Water level

P mB Reduced pressure at sea level

ppp mB Pressure trend value

Pw s Wave period - visual

R1 mm Precipitation 1h

RD10min KJ/m2 Diffuse radiation - 10 min

Rff10m m/s Maximum gust for 10 minutes

RG10min KJ/m2 Global radiation - 10 min

Rint1h m/h Rainfall intensity per 1h

Sal ppm Water salinity

Parameter Unit of measure Description

SSS10m mins Sunshine for 10 minutes

Ta °C Air temperature

Td °C Dew point temperature

Temp °C Average water temperature

UR % Air relative humidity

VV m Horizontal visibility

VVh m Vertical visibility

WHeight cm The significant height of the wave

WPeriod 0.1s Typical wave period

ww - Current weather conditions

In order to obtain correct and consistent results for the statistical analysis, modeling and simulation

tasks that will take place within the project, it is mandatory that the values recorded in-situ for these

parameters are stored and processed appropriately. In this sense, the project team responsible for the

implementation of the database analyzed several database models and technical solutions in order to

design and implement a dynamic high-performance database for these parameters.

Due to the dynamic characteristics of the specifications of identified parameters, the database must

have a flexible structure that can be easily adapted to changes in parameter specifications (their type,

invalid/missing values, data resolution, etc.), as well as the emergence of new parameters that could

later be added to the list of those of interest for project implementation.

At the same time, due to the nature of the measured and recorded processes, the database must

allow the storage, processing and analysis of large amounts of data, with a high rate of transfer, both

on the writing side (input) and on the reading side (output). The design of the database must take this

aspect into account, so that the implementation of the database ensures a high degree of availability

and high throughput.

Given the information provided by the experts in the project, the structure of the database proposed

by the database experts is described by the entity-relationship diagram from Figure 1.

4. Conclusions

As part of the research carried out during within Platmarisc project, our study on database models was

carried out in order to identify a database model suitable for the collection and processing of dynamic

parameters of maritime systems, a study that led to the conceptual design of a database for hydro-

meteorological parameters.

The research carried out also has an important contribution to the implementation of the Platmarisc

project, by providing a tool for the collection and processing of maritime parameters, measured by the

sensors of the integrated marine platform, data which will be essential for the modeling and simulation

activities planned in the next stages of the project.

Figure 1. E-R diagram of the database for dynamic maritime parameters

Acknowledgements: This work was supported by grant no. 383/390059/04.10.2021, project cod ID /

Cod MySMIS: 120201: Innovative integrated maritime platform for real-time intervention through

simulated disaster risk management assistance in coastal and port areas – PLATMARISC.

References

[1] Thalheim, Bernhard. Entity-relationship modeling: foundations of database technology. Springer

Science & Business Media, 2013.
[2] Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications

of the ACM. 13 (6): 377–387. doi:10.1145/362384.362685.
[3] Mancas, Christian. "On enforcing relational constraints in MatBase." London Journal of Research

in Computer Science and Technology (2017).
[4] Mancas, Christian. "MatBase E-RD Cycles Associated Non-Relational Constraints Discovery

Assistance Algorithm." Intelligent Computing-Proceedings of the Computing Conference. Springer,

Cham, 2019.
[5] Mancas, Christian. "MatBase constraint sets coherence and minimality enforcement algorithms."

European Conference on Advances in Databases and Information Systems. Springer, Cham, 2018.

[6] Mancas, Christian. Conceptual Data Modeling and Database Design: A Fully Algorithmic

Approach, Volume 1: The Shortest Advisable Path. CRC Press, 2016.
[7] Roy-Hubara, N., Shoval, P., & Sturm, A. (2019). A Method for Database Model Selection. Lecture

Notes in Business Information Processing, 261–275. doi:10.1007/978-3-030-20618-5_18

