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Abstract. Modern materials strength calculations, even if applied to classical problems of the 

theory of elasticity or plasticity, cannot be conceived without the use of numerical calculation 

methods and material models. This situation is a direct consequence of the progress made in 

the field of computers, both in the field of hardware and software. This article presents the 

numerical evaluation of the behavior of a plate on impact with a rigid projectile using 

Smoothed-Particle Hydrodynamics method and is shown the evolution of the impact with its 

effects (deformation with perforation of the plate). Also, an analize of the varıatıon of the 

kinetic energy of the bullet and bullet velocity over time are presented.  

1.  Introduction 

Modern materials strength calculations, even if applied to classical problems of the theory of elasticity 

or plasticity, cannot be conceived without the use of numerical calculation methods and material 

models. This situation is a direct consequence of the progress made in the field of computers, both in 

the field of hardware and software.  

The inquisitive mind of man, the desire for the new, the desire to have a means of calculation 

dedicated to a certain analysis and others, considered together or individually, in order to bring reality 

closer to the description of phenomena, have led to the emergence of new methods of numerical 

analysis and simulation, known as meshfree particle method or particle-based methods. [1] 

The SPH method is a relatively new method, used for the approximate integration of partial 

differential equations. It is also a meshless method, in a Lagrangian approach, which uses 

pseudoparticles (attached in nodes), on the basis of which an interpolation method is defined for the 

calculation of smoothed field variables.[2] 

It is generally known that the formulation and application of a numerical method is difficult to 

achieve without a network (discretization). The mathematical formulation of the SPH method offers 

the solution to ensure the numerical stability of the solution for problems (equations) with Neumann 

type boundary conditions, in the conditions of an irregular distribution of nodes (particles) on the 

respective domain. 

In the use of the SPH method, the state of the system is considered to be represented by a set of 

particles (placed in nodes), with individual material properties and which move according to the 
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conservation equations to which they are subjected. Each particle is characterized by field variables, 

which can be mass (m), density (ρ), pressure (p), position (r), velocity (v), acceleration (a), 

temperature (T), and so on [3]. 

 

2.  Fundamentals of the SPH method 

The SPH method is a meshless method, which means that the examined domain is represented by a 

number of nodes that represent the domain's particles and their material properties. Each particle is an 

interpolation point for which the material properties have been determined [4]. 

The computed results on all the particles, using an interpolation function, provide the solution to 

the problem. The principles of SPH theory can be summarized as interpolation theory, in which all 

behavior laws are translated into integral equations [4]. The kernel function approximates the field 

variable (function) in a point with a weighted approximation (particle). The connection can thus be 

used to estimate a function A(r): 

                          𝐴(𝑟) = ∫ 𝐴(𝑟′)𝑊(𝑟 − 𝑟′ , ℎ)𝑑𝑟′                           (1) 

where the function 𝑊(𝑟 − 𝑟′ , ℎ)𝑑𝑟′  is the kernel function, which has two main properties: 

 

a) ∫ 𝑊(𝑟 − 𝑟′, ℎ)𝑑𝑟′ = 1                    (2) 

b) lim
ℎ−>0

𝑊(𝑟 − 𝑟′, ℎ) = 𝛿(𝑟 − 𝑟′)           (3) 

δ is the Dirac delta function and h is the smoothing length. Figure 1[4] shows an intuitive illustration 

of this parameter. 

 
Figure 1. The smoothing lengh h 

 

A domain comprising particles in interaction with particle i is defined by the smoothing length. 

Figures 2-a)[4] and 2-b)[4] show the smoothing function W(r,h) = W(r/h).  

 

      
a)                            b) 

      

Figure 2. Grafical representation of Kernel function 

 



 

 

 

 

 

 

Different kernel functions, such as Gaussian, polynomial, and spline can be utilized. The cubic     

B-spline function is the most commonly utilized. The following is an example of such a function: 

 

a) 𝑊(𝑟, ℎ) =
𝜎

ℎ𝑛 {

(1 −
3

2
𝑠2 +

3

4
𝑠3) , 0 ≤ 𝑠 ≤ 1

1

4
(2 − 𝑠)3,              1 ≤ 𝑠 ≤ 2

0,                                     𝑠 > 2

                  (4) 

where s = r/h, n is the number representing the spatial dimension (1, 2 or 3) and σ is a constant which 

can have the value: 2/3, 10/7π or 1/π, depending on the space with one, two or three dimensions. In 

fact, the kernel function is a delta or Dirac function with some specific requirements. 

3.  Materials and methods 

The purpose of this paper is to evaluate the performance of an aluminum plate on impact with a 7.62 

mm rigid projectile using Smoothed-Particle Hydrodynamics method. A normal impact was 

considered, with an impact velocity of 500 m/s and the analyses time of 9*10
-5

 seconds.  

Numerical simulations were carried out using the LS-DYNA software [5]. 

For the theoretical study, the aluminum homogeneous and isotropic plate, presented in Figure 3, 

has the following characteristics: 

 Density: ρ = 2710 [kg/m
3
] 

 Young's modulus: E = 0.690*10
11

 [Pa] 

 Poisson's ratio: υ = 0.33 

 Yield stress: σc = 315e6 [Pa] 

 Dimensions: 0.1 m x 0.1 m x 0.005 m 

 Node number = 50000 

 Element number (SOLID164) = 50000 

 Inter-nodal distance  = 0.001 [m]  

The material model used for the plate was plastic kinematic hardening and a rigid material was 

considered for the bullet. From my own experience, the plastic kinematic hardening material model 

describes very well the behavior of Aluminum plate and I trust the material constants (the         

Cowper Symonds coefficients). Using thin plates, high impact velocity, short execution time and 

unreliable thermal effect, this material model is the most suitable in our case. 

The interest was focused on the plate, that's why it was considered a rigid material for the bullet. 

The using of these assumptions covers the calculation results and save computer time. 

The plate was simulated by Smoothed-Particle Hydrodynamics method and the nodes belonging to 

the four sides have all degrees of freedom blocked (DOF=0).  

 

 



 

 

 

 

 

 

 
Figure 3. Smoothed-Particle Hydrodynamics model 

 

The characteristics of the bullet, presented in Figure 4, are the following: 

 Caliber = 7.62 [mm] 

 Density: ρ = 7850 [kg/m
3
] 

 Impact velocity = 500 [m/s] 

 Volume = 6,8587e-7 [m
3
] 

 Mass = 0.00538 [kg]  

 Element number (SOLID168) = 3860  

 Node number = 6046 

 Average element finit dimension = 0.001 [m] 

  

4.  Numerical simulation 

In Figure 5 can be observed the phenomenon of penetration of the aluminum plate, but also the 

phenomenon of yielding the material by fragmentation and displacement of particles both in the 

direction of perforation and in the opposite direction. 

 

   
        t = 10 μs                                            t = 20 μs 

 

 

Figure 4. Model of the bullet 

 



 

 

 

 

 

 

    
     t = 30 μs                                   t = 60 μs 

 
Figure 5. Time evolution of the impact 

 

From the analysis of the field of von Mises equivalent stresses or of the pressure on the impact 

direction from Figure 6, it can be seen both the strong local character of the impact and the symmetry 

of the stresses that appear on the plate. 

 
Figure 6. von Mises equivalent stresses over time 

 

From the graphical representation of the bullet kinetic energy variation, presented in Figure 7, 

results a variation between the limits of 543-673 Nm, meaning that there is a falling of the kinetic 

energy of the bullet by 19%. At time t = 60 μs, the total energy of the bullet enters a level, which 

means the completion of the perforating process, the bullet following a constant velocity, without 

encountering resistance. 

 

 
 

Figure 7. Time evolution of the bullet total energy 



 

 

 

 

 

 

 
 

Figure 8. Time evolution of the bullet velocity 

 

Figure 8 shows the time variation of the bullet velocity during the penetration and perforation 

processes and it is observed that the bullet velocity is reduced from the initial value of 500 m/s to the 

minimum value of 449 m/s, then he enters a bearing, which means the completion of the perforation 

process, which follows a constant speed of 450 m/s, without encountering resistance. 

 

5.  Results and discussions 

This paper is part of a large and complex study in which was analyzed the impact between a rigid 

projectile and a homogeneous and isotropic aluminum plate, measuring 100 x 100 x 5 mm, with a 

bullet velocity of 500 m/s.  

 

 
            a)                                                       b) 

  

Figure 9. Finite Element model and Element Free Galerkin model 

 

This impact was simulated by Finite Element method (Figure 9, a), by Element Free Galerkin 

method (Figure 9, b) and by Smoothed-Particle Hydrodynamics method (Figure 3), and the results 

obtained by these three methods were compared in Table 1. During the study, were used the same 

boundary conditions, the same material properties and the same bullet velocity. 

The Element-Free Galerkin (EFG) method is a very promising method for the treatment of partial 

differential equations. Because of the absence of element connectivity, nodal points can be added 

easily to the part of the domain where the solution is (expected to be) steep. This makes the EFG 

method more flexible than the Finite Element method. The method looks very promising for 

computations in fracture mechanics, since nodal points can be arranged around crack tips in order to 

obtain accurate stress intensity factors [6]. 

 

 

 

 



 

 

 

 

 

 

Table 1. Comparison between three numerical methods 

 SPH MEF EFG Error EFG/MEF Error SPH/MEF 

Plate total energy [Nm] 10.9 9.89 10.5 6.17% 9.27% 

Bullet total energy - max [Nm] 673 673 673 0.00% 0.00% 

Bullet total energy - min [Nm] 543 604 594 -1.66% -8.59% 

Bullet velocity - min [m/s] 449 474 470 -0.84% -4.47% 

Bullet residual velocity [m/s] 450 476 470 -1.26% -4.26% 

processing time [s] 20 76 233   

 

It can be seen that the values obtained are close and the errors are relatively small, below 10%, 

which is a very good match of the values obtained, implicitly a proper analysis 

6.  Conclusions 

A numerical analysis of the ballistic performance of an aluminum plate on impact with 7.62 mm 

projectile was conducted, using the SPH method, for the bullet velocity of 500 m/s.  

The results obtained by SPH method were compared with the results obtained in the numerical 

simulation of the same impact, analyzed with the Finite Element method and the Element Free 

Galerkin method and the errors are slightly lower, below 10%, this representing a very good 

concordance of the values obtained, implicitly an appropriate analysis. 
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