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Abstract. Recently a lot of work have been done to implement artificial intelligence controllers 

in the field of electrical motors. This paper presents a novel speed controller, developed through 

Reinforcement learning techniques, applied to series dc motors. We emphasize the ease of 

developed controller in available off the shelf hardware for industrial use. We used the open-

source Python package gym-electric-motor [1] for environment setup, pytorch framework for 

developing the controller and .NET for performance evaluation. 

 

1. Introduction 

Electric motor control is an important topic in research and industry and lately the usage of artificial 

intelligence for development of new controllers, beside the classical PI and MPC (model predictive 

control), has grown. Lately, due to breakthrough developments in this field, the usage of machine 

learning (ML) and deep neural networks (DNN) has gained a lot of traction. Applying these techniques 

in the field of motor control is new and still in the development stages.  

Different strategies and frameworks have been developed aimed directly to this field and we focused 

on an OpenAI Gym environment gym-electric-motor (GEM) for setting up the environment, training 

and validation, and reinforcement learning (RL) as the algorithm for developing such a controller. 

Basically, the controller is and agent interacting with the environment and upon any action it’s 

receiving a reward based on control objective. The main definitions used in reinforcement learning are: 

a) Environment The world that an agent interacts with and learns from. 

b) Action a: How the Agent responds to the Environment. The set of all possible Actions 

is called action-space. 

c) State s: The current characteristic of the Environment. The set of all possible States the 

Environment can be in is called state-space. 

d) Reward r: Reward is the key feedback from Environment to Agent. It is what drives the 

Agent to learn and to change its future action. An aggregation of rewards over multiple 

time steps is called Return. 

e) Optimal Action-Value function Q*(s,a): Gives the expected return if you start in state s, 

take an arbitrary action a, and then for each future time step take the action that 

maximizes returns. Q can be said to stand for the “quality” of the action in a state. We 

try to approximate this function. 
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Figure 1. Basic reinforcement learning setting. 

 

Until present application of reinforcement learning applied to electrical motors has been done 

mainly on Tensorflow with the same GEM environment [4] but with different algorithms like deep-

deterministic-policy-gradient DDPG but on continuous action space. Our approach is to evaluate a 

controller on a different algorithm (DQN) on discrete action space (which should be more difficult in 

the chosen environment, series connection dc motors). 

 

2. Environment setup 

For developing the new controller, we choose a setup with a series DC motor supplied by a two-

quadrant converter. 

 
Figure 2. Supply converter motor load system. 

 

 
Figure 3. Two quadrant converter 

Table 1. The parameters for dc motor are: 

R_am Ohm 2.93 Armature circuit resistance 

R_em Ohm 0.98 Exciting circuit resistance 

L_am H 6.1e-3 Armature circuit inductance 

L_em H 1.7e-3 Exciting circuit inductance 

L_e_prime H 0.04 Effective excitation inductance 

J_rotor kg/m^2 0.016 Moment of inertia of the rotor 

In an OpenAI Gym environment the action- and observation space define the set of possible values 

for the actions and observations. In terms of electric motor control, the action space could be modelled 

in a discrete or continuous way [1]. In the discrete case, the actions are the direct switching commands 

for the transistors. Potential controllers are a hysteresis on-off controller or a DQN-agent. 



 

 

 

 

 

 

The action space of the converter is Discrete(3): 0- Both Transistors off, 1- Upper Transistor on, 2- 

Lower Transistor on.  

The generation of reference trajectories (e.g. the control set points) is a fundamental part of the 

environment and necessary for diverse training. The references should cover all use cases such that the 

RL-agent generalizes well and to avoid biased training data. 

The objective is speed control and the refence used for learning process is a generator that generates 

a reference for speed state by a Wiener Process with the changing parameter sigma and mean = 0. 

The Wiener process is a stochastic process W(t) for t>=0 with W(0)=0 such that the 

increment W(t)−W(s) is Gaussian with mean 0 and variance σ for any 0<=s<t, while increments for 

successive time steps are statistically independent. 
The observations of the environments are a concatenation of the environment state, and the reference 

values the controller should track. All values are normalized by the limits of the state variables to a range 

of [−1, +1] or [0, +1] in case negative values are implausible for a state. 

In case of series excitation dc motor the environment state is: 

𝑠𝑡𝑎𝑡𝑒 = [𝜔, 𝑇, 𝑖, 𝑢, 𝑢𝑠𝑢𝑝]     (1) 

 

3. Learning process 

We implemented in pytorch a DQN (double Q learning algorithm) [2] for training the controller. 

The DQN algorithm is a known reinforcement learning technique that can be applied on a variety of 

problems but was mainly used on games. Our approach is to evaluate if the same algorithm can be 

applied on engineering related problems. 

The core concept of DQN is the replay memory in which we store past observed measurements. We 

interact with the environment on episode bases and after the episode is finished, we are sampling the 

replay memory and try to minimize the loss function. 

The error is the standard temporal difference error: 

𝛿 = 𝑄(𝑠, 𝑎) − (𝑟 + 𝛾max𝑄(𝑠′, 𝑎))    (2) 

 

Where s is the current state, a is the action, r is the reward, γ is the discount factor and a’ is the next 

state.The loss is calculated over a batch of transitions sampled for replay memory. 

 

The network is implemented in a class named Brain: 

class Brain(nn.Module): 

    def __init__(self,dim_in,nr_actiuni): 

        super(Brain,self).__init__() 

        self.dim_in=dim_in 

        self.nr_actiuni=nb_actiuni 

        self.fc1=nn.Linear(input_size,128) 

        self.fc2=nn.Linear(128,128) 

        self.fc3=nn.Linear(128,128) 

        self.fc4=nn.Linear(128,nb_actions) 

    def forward(self,state): 

        x=torch.relu(self.fc1(state)) 

        x=torch.relu(self.fc2(x)) 

        x=torch.relu(self.fc3(x)) 

        q_values=self.fc4(x) 

        return q_values 

The neural network consists of four layers with 128 neurons. The activation function for each 

neuron is Relu. 

As per the DQN algorithm we have 2 networks, and the class is described below: 

class NeuralNet(nn.Module): 

https://en.wikipedia.org/wiki/Wiener_process


 

 

 

 

 

 

    def __init__(self, dim_in, iesire_dim): 

        super(NeuralNet,self).__init__() 

        self. dim_in = dim_in 

        self.nb_actiuni= iesire_dim 

        self.online = Brain(dim_in, iesire_dim) 

        self.target = copy.deepcopy(self.online) 

        for p in self.target.parameters(): 

            p.requires_grad = False 

 

    def forward(self, input, model): 

        if model == "online": 

            return self.online(input) 

        elif model == "target": 

            return self.target(input) 

 

The model inputs are [speed, reference] and the outputs are the Q values for actions 0, 1 and 2. 

For choosing the control output we used ε greedy with a minimum exploration rate 0.15. 

For optimization purposes we used Adam algorithm with a learning rate 0.001 and the loss 

function SmoothL1Loss. Gamma used is 0.99 and 3 the number of experiences between updates of 

Q_online. We train the model in 8e6 iterations with a reward function that gives 1 if the error between 

setpoint and actual speed value is decreasing and -1 in rest [3]. 

Below are presented snapshots in the process of learning: 

 

 
Figure 4. Process of learning. 

 

 
Fig.5 Reward and Loss plots 

4. Results 

For evaluation of controller performance we’ve created a dynamic link library throught 

Simulink embbeded coder of a model consisting of series dc motor feed by a 2 quadrant converter. 

The motor parameters are not the same as the parameters used for neural network training.  

The controller was exported in ONNX format and we integrated both modules in a .net 

application through ML.NET framework. We followed this path since Matlab does not have a 



 

 

 

 

 

 

working onnx model importer. Also, the onnx runtime provided by ML.NET is suitable for running 

on linux based embedded targets. 

                                               
               Fig. 6 Simulink model                                                    Fig. 7 Onnx model view 

 

 

The WPF application windows is presented below: 

 
Fig.8 Application for controller evaluation 

 

The step response for the system is presented below: 

 
Fig.8 Series DC motor step response 

As seen in the plot above, the step response is very good considering the nonlinear 

characteristics of series excitation dc motor and the discrete control is impacting the excitation field 

also. 

On the same time the toolchain used for evaluation is novel and provide a foundation for 

further development. It’s a known fact that Pythorch lacks a good support for production use, fact 

that makes TensorFlow the first choice for production environments. 

The toolchain that we tested leverages the ML.NET, ONNX runtime in conjunction with 

Matlab for offline evaluation or .net on embedded devices for production (future implementation). 

We do not have knowledge of existing applications that use this approach. 
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5. Conclusions 

In this paper we presented a novel DQN discrete speed controller for series DC motors fed by a two-

quadrant converter, trained with pytorch framework.  

The results are encouraging, and the next step is hardware implementation through ONNX format 

and real time hardware. The real time hardware can be any Linux or Windows 10 IOT that has support 

for .net 3.0 or above. 
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