

Volume XXIII 2020

ISSUE no.2

MBNA Publishing House Constanta 2020

doi: 10.21279/1454-864X-20-I2-024
SBNA© 2020. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER • OPEN ACCESS

Implementing a Software Load Balancer with a

Genetic Algorithm

 To cite this article: Alexandru Curcă and Eugen Petac, Scientific Bulletin of Naval Academy, Vol. XXIII

2020, pg.177-184.

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

http://www.anmb.ro/

Implementing a Software Load Balancer with a Genetic

Algorithm

A. Curcă
1
, E. Petac

2

1,2
“Ovidius” University of Constanța, 124, Mamaia Blvd., Constanta, Romania

1
alexandrucurca23@gmail.com,

2
epetac@univ-ovidius.ro

Abstract. In the context of network evolution, concepts like Software Defined Networking

(SDN) and Network Functions Virtualisation (NFV) appeared on the market. Network

virtualization permits the implementation of routers, switches and load balancers in software

and separation of control plane and data plane brings easier configuration, implementation and

scalability. The monolithic design of traditional network devices can be changed by

implementing new algorithms which will improve the overall system performance. An
example is our Software Load Balancer with a Genetic Algorithm. The code written in Python

is functional through the POX Controller and the advantages of evolutionary algorithms make

this implementation an innovative solution for dynamically modified topologies.

Key words: Load Balancer, Genetic Algorithm, Software Defined Network, Mininet.

1. Introduction

In the field of computer science, load balancing [1] uses multiple servers to support a single service,

such as a high-volume web site. It can increase the availability of web sites and web-based
applications by optimizing resource use, maximizing throughput and minimizing response time. The

network component responsible for this task is the load balancer, which can be hardware or software

implemented. In terms of network security, its location is usually set in Demilitarized Zone (DMZ)
[2]. The distribution of traffic is made based on factors such as the number of current connections to

the server farm, the processor utilization, the network connection or the server performance. In a

network topology, a load balancer uses a public virtual IP. This one is the destination of client
requests, which are redirected to one of the web farm servers. Servers in web farm have private IP

addresses [3].

The high rate of traffic in cloud systems brought the concepts of Software Defined Network (SDN)

and Network Function Virtualization (NFV) [4]. The control plane of the network devices (switches or
routers) is implemented in independent controllers by using protocols like OpenFlow [5] as interface.

At the same time, the network devices can be fully implemented in software for managing traffic

between virtual machines. With these new concepts, a wide range of advantages appeared, among
which we list: cost reduction, easier network management (a new policy can be implemented with a

single script), easier implementation of new protocols.

There are a number of algorithms and solutions for implementing a Load balancer in a SDN

environment among which we list: Weighted Least Connection [6], Round Robin [7], Weighted
Round Robin [8] or random. A comparison between the current solution and those listed above is

depicted in Section 3 of this paper. Genetic algorithms are used in various fields, like timetabling,

scheduling problems or engineering [9]. In the field of computer networks is worth mentioning the
research in finding the shortest path in packet switching networks [10]. The biggest advantage of our

solution (presented in Section 2) comes from the ability to adapt to a dynamic environment in which

the change of nodes and connections is difficult to anticipate.

2. Proposed Solution

The current solutions is made possible with Mininet [11], which is a framework capable of emulating
SDN compatible network devices and Linux hosts. Those network devices can be programmed by an

SDN controller. There are various solutions [12]-[13], one of them being POX, a Python based open

source implementation for on Windows, Mac OS, or Linux used primarily for research and education
[14]. The topology used for the current paper is shown in figure 1. The following equipment was

emulated within the topology: 5 hosts with HTTP client role (h11-15 i), 10 hosts with HTTP server

role (h1-10), one switch (s1) and one load balancer (s2). Mininet permits the manual setting of

bandwidth and delay for every connection between devices, thus we set different values for the
connections between load balancer and servers for the purpose of analyzing the evolution of the

genetic algorithm. It should be noted that, both the switch and the load balancer are simple OpenFlow

switches, the desired functionality being obtained from the interaction with the POX controller (c0).
S1 is assigned the virtual IP address 10.0.1.1, which is the public address of the server farm. In the

server farm, h1-h10 are assigned the IP address in range 10.0.0.1-10.0.0.10.

The load balancing will be done by distributing every packet that came from a new TCP connection
[3] to a server in the server farm after the learn phase of the genetic algorithm. The output of the

genetic algorithm will be made up of a list with the right order of task distributions to servers. The

protocol used between load balancer(S2) and POX Controller is OpenFlow.

Figure 1. Used topology. Source: Authors’ contribution.

The distribution will be done by sending every packet that came from a new TCP connection to a

server in the server farm after the learn phase of the genetic algorithm. The output of the genetic

algorithm will be made up of a list with the right order of task distributions to servers.

The pseudocode of the genetic algorithm is as follows:

INITIALIZATION generate_P(n) // P(n)-population with n chromosomes
 evaluate_P(n)

ITERATIONS begin t:=0

 while (t < generations_nr) //number of generations
 if (cross_condition)

 cross_P(n)

 endif

 if(mutate_condition)

 mutate_P(n)

 endif

 t:=t+1

 endwhile

The function generate_P(n) initializes the population P(n) with n chromosomes and the

function evaluate_P(n) applies the fitness function for every member in the initial population.

The variable generation_nr, represents the number of iterations the algorithm will run. The

cross_condition/mutate_condition establishes if during the current generation a

cross/mutation will be made. The two functions cross_P(n) and mutate_P(n) will do the cross

or mutation operation. These two operations include the evaluation of the current population and the

selection of chromosomes.

During the cross phase, two chromosomes are selected and crossed resulting a new member of
population. This one will be evaluated and will replace the worst chromosome from population. The

mutation phase will select a single chromosome on which we will replace a server with a randomly

chosen one. The resulting chromosome will also be evaluated and will replace the worst chromosome

from population.
The components of the genetic algorithm, adapted to the current solution, are as follows:

 CHROMOSOME REPRESENTATION

The coding of a chromosome is a list 𝑐𝑗 = [𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛] each 𝑠𝑖 is a server from the server

farm. The fitness value [15] for a chromosome is the time, in seconds, it takes a host to get a

sequence of consecutive packets from the respective servers. For this implementation, the

length of a chromosome is 30 servers.

 POPULATION REPRESENTATION

The population 𝑃(𝑁) = {(𝑐1, 𝑡1,), (𝑐2, 𝑡2,) … (𝑐𝑁 , 𝑡𝑁 ,)}, is a Python dictionary, each tuple
(𝑐𝑖 , 𝑡𝑖 ,) representing a chromosome mapping the fitness value 𝑡𝑖. N is the number of

chromosomes in the population. The purpose of the algorithm is to find the chromosome with

the smallest responding time (the best fitness value). This implementation’s population
includes 50 chromosomes.

 INITIAL POPULATION

The initial population is made with 50 chromosomes random generated.

 CROSSOVER:

By picking two chromosomes, father chromosome and mother chromosome, from the
population and generating a random number between 0 and chromosome’s length, it will

result a new chromosome (child chromosome) as shown in figure 2. First part of the result is

made with father’s servers (from 0 to random value -1) and the second part with mother’s

(from random value to length of chromosome-1). During both phases, crossover and mutation,
the worst chromosome of the population will be replaced by the resulting one.

 MUTATION

The mutation is possible by changing a random chosen server from a picked chromosome with

a new random server, as shown in figure 3.

 SELECTION:

For a N-chromosome population, there will be made 5 distinct classes with "N/5" members (if

N is not divisible by 5, the rest of the chromosomes will be distributed one-by-one starting
with the first class). Every chromosome is captured in one of the five classes for selection.

Figure 2. Crossover example. Source: Authors’ contribution.

Figure 3. Mutation example. Source: Authors’ contribution.

The distribution of selection chances is shown in figure 4 and obtained with the following rule: In a

population of 𝑁 chromosomes, for a fitness value 𝑓𝑖 and a population member i, the probability of

selection will be 𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

.

Figure 3. Distribution of selection chances. Source: Authors’ contribution.

 GENETIC ALGORITHM PARAMETERS

There are various scientific opinions regarding the tuning of genetic algorithm parameters

[15]. For the current project we set the following: populations size - 50 chromosomes, length

of the chromosomes – 30 servers, cross rate – 50%, mutation rate – 1%, number of

generations – 50.

3. Experimental Results

During the debugging phase we captured various OpenFlow packets in Wireshark [16] as shown in

figure 5. Every new packet reaching the load balancer will generate an OFPT_PACKET_IN [17] sent
to controller. The POX controller will update the balancer’s forwarding table with an

OFPT_FLOW_MOD [18] packet (packets 367 and 368 from figure 5).

Figure 5. Forwarding table modification when receiving an unknown packet. Source: Authors’

processing using Wireshark.

In figure 6 we analyzed the tuple (worst time, medium time, best time) per population. The X - axis
represents the numbers of modification suffered by the population during the learning phase and the

Y-axis corresponds to time in seconds. Even if the best chromosome didn’t change from the initial

population (for the current plotting), there is a visible positive variation of worst chromosome and
medium time per population.

A comparison between various load In Mininet we set different connections between Load

Balancer and servers in server farm. For servers 1 and 2 - a bandwidth of 2 Mbps and a delay of 25 ms

were established, for servers 3 and 4 - 4 Mbps and 20 ms, for servers 5 and 6 - 6 Mbps and 15ms, for

servers 7 and 8 – 8 Mbps and 10 ms , and for servers 9 and 10 – 10 Mbps and 5ms. Even if all servers

were considered equal in the beginning of the algorithm, during the learning phase, the servers with a

superior connection received more packets as can be seen in figure 7. It is worth mentioning server

10(10.0.0.10 – colored pink) which, in the first population received 156 packets and in the last one
received 176. On the other side, server 1 (10.0.0.1 – colored brown) started with 158 packets and

because of lack of performance ended with 142 in the final population.

Figure 6. Time evolution of population after modifications. Source: Authors’ contribution.

Figure 7. Evolution of packet distribution per server. Source: Authors’ contribution.

A comparison between various load balancing algorithms was made by sending 1000 packets to the
virtual address. The experimental results are shown in figure 8. The round-trip time of the user sent

packets, where distribution is made by the genetic algorithm, is 84.7 second, while for the weighted

least-bandwidth is almost 95.2 and for the round-robin is 100.

Figure 8. Time comparison between algorithms. Source: Authors’ contribution.

4. Conclusions
The current project could represent a solution for a dynamically-changing server farm topology, where

the performance of different servers is hard to evaluate. Even if the performance is improved with the

genetic algorithm, there is a drawback represented by the time of learning. There is a compromise

between the two aforementioned, due to the fact that a higher performance requires larger
chromosome length, population size and generations number.

Another advantage of our load balancer is OpenFlow-compatibility. Unlike the hardware solutions

where algorithms are embedded in the device, the current one can be changed dynamically and easily
deployed. Also, the controller can supply various network protocols for other devices in the topology,

by knowing the device’s Data Path ID. In this mode, the controller can be used as control plane for

entire topology. On the software side of things, the application is written using well documented
languages and technologies, respecting programming principles.

References

[1] Gibson, Darril. CompTIA Security+: Get Certified Get Ahead SY0-201 Study Guide. YCDA,

LLC Publishing (2009).
[2] Webb, Jack. "Network Demilitarized Zone (DMZ)." (2014). Available at: http://

infosecwriters.com/Papers/jwebb_network_demilitarized_zone.pdf. [Accessed March 2019].

[3] Petac, Eugen. “Networks and Distributed Systems.” Distributed Multimodal Virtual
Environments, Publisher: Pro Universitaria, Bucharest, Romania (2015): 103-206.

[4] Vilalta, Ricard, et al. "The SDN/NFV cloud computing platform and transport network of the

ADRENALINE testbed." Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft). IEEE (2015).

[5] Azodolmolky, Siamak. Software defined networking with OpenFlow. Packt Publishing Ltd

(2013).

[6] Choi, DongJun, Kwang Sik Chung, and JinGon Shon. "An improvement on the weighted least-
connection scheduling algorithm for load balancing in web cluster systems." Grid and distributed

computing, control and automation. Springer, Berlin, Heidelberg (2010): 127-134.

[7] Youm, Dong Hyun, and Ravi Yadav. "Load Balancing Strategy using Round Robin Algorithm."
Asia-pacific Journal of Convergent Research Interchange 2.3 (2016): 1-10.

[8] Sabiya, Japinder Singh. "Weighted round-robin load balancing using software defined

networking." International Journal of Advanced Research in Computer Science and Software

Engineering (IJARCSSE) 6.6 (2016).

[9] Tomoiagă, Bogdan, et al. "Pareto optimal reconfiguration of power distribution systems using a

genetic algorithm based on NSGA-II." Energies 6.3 (2013): 1439-1455.

[10] Chaudhary, Anu, and Neeraj Kumar Pandey. "GENETIC ALGORITHM FOR SHORTEST
PATH IN PACKET SWITCHING NETWORKS." Journal of Theoretical & Applied Information

Technology 29.2 (2011).

[11] Mininet. Available at: https://github.com/mininet/mininet/wiki/Introduction-to-mininet.
[Accessed March 2019].

[12] OpenDaylight Foundation. Available at: https://www.opendaylight.org/. [Accessed March

2019].

[13] Beacon. Available at: https://openflow.stanford.edu/display/Beacon/Home. [Accessed March
2019].

[14] POX. Available at: https://github.com/noxrepo/pox. [Accessed March 2019].

[15] Mitchell, Melanie. An introduction to genetic algorithms. MIT press (1998).
[16] Wireshark. Available at: https://www.wireshark.org/. [Accessed March 2019].

[17] PacketIn. Available at: http://flowgrammable.org/sdn/openflow/message-layer/packetin/.

[Accessed March 2019].
[18] FlowMod. Available at: http://flowgrammable.org/sdn/openflow/message-layer/flowmod/.

[Accessed March 2019].

