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Abstract. The mother wavelet greatly influences the wavelet analysis of a non-stationary and 

nonlinear recorded signal. Choosing mother wavelet must be done to determine cracks in 

rotating shafts so as to take into account the nature and type of information signals to be 

extracted from the signal. The difficulty in optimum selection of the mother wavelet is 

determined by their complex properties that determine different selection criteria. In the paper, 

several families of functions (Haar, Daubechies, Symlets, Coiflet, BiorSplines) were used for 

analysis and the proposed selection criterion is the energy dissipated on the frequency bands. 

Signal recordings were made on a stand to determine the presence of cracks in rotating shafts 

and their classification. For discrete decomposition of recorded signals (DWT) and the 

calculation of energy dissipated on the frequency bands the Matlab wavelet instrument was 

used. 

1.  Introduction                        

Wavelets transform (WT) of the recorded signals, which are often nonlinear and non-stationary, is 

strongly influenced by the choice of the mother wavelet. The choice of mother wavelet for optimum 

determination of the cracks in the rotation shaft is made in such a way that it takes into account the 

nature and type of information that must be extracted from the signal. Selection of an optimal mother 

wavelet is a very difficult topic due to different selection criteria, which can indicate several types of 

mother wavelet. Mother wavelet functions have different properties in time and frequency, so it is 

difficult to choose the best wavelet function for extracting defects features from recorded signal.  

In the paper to wavelet analysis were used five mother wavelet (Haar, Daubechies, Coiflets, Symlets, 

Biorthogonal) and their selection criterion is the energy distribution in the frequency bands of the 

original signal.  

To detect faults in rotating machinery, bearings, gears and cracks in shafts are used widely wavelet 

transform. To detect cracks from rotating shafts, in work [1] Darpe used a “method based on the 

wavelet transform”. “Continuous Wavelet Transform” (CWT) was used in the paper [2] “describing 

the time and frequency characteristics of cracks in the rotation shaft”. The paper [3] presents a “review 

on the application of the wavelet transform in the diagnosis of rotary machine defects, which include: 

the time – frequency analysis of signals, the fault feature extraction, the singularity detection for 

signals, the denoising and extraction of the weak signals, the compression of vibration signals and the 

system identification”. To simulate cracks in rotating shafts and to make measurements, used "PT 

500.11 - Crack Detection in the Rotating Shaft Kit" (figures. 1, 2), [4]. Signal recording and storage were 



 

 

 

 

 

 

performed with Bruel & Kjaer equipment, LAN-XI Data Acquisition System, type DeltaTron 4506 

accelerometer, PULSE software. Accelerometers mounted on the two bearing blocks, in vertical and horizontal 

direction, were used to record the signals. The shaft, with three operating states (healthy shaft, depths of the 

crack 16%, 33% and 66%) it is rotated by means of an electric motor at four rotational speeds 600 rpm, 1200 

rpm and 2400 rpm [5]. 
 

 
 

Figure 1.Experimental setup for “shaft with crack” Figure 2.Crack simulation in simulated with 

elastic rotor [5]                                       rotating shaft kit 

 

Discrete Wavelet Transform (DWT) and Parseval's Theorem is used in this work to study the 

phenomenon of cracking in the shaft rotation. DWT breaks down the recorded signal into 

approximations and details by successively passing through low pass filters (LPF) and high pass filters 

(HPF). By decomposing the signal the information does not change over time, it is distributed at the 

level of each sub-band. A feature in the optimal evaluation of cracks in the rotation shaft is the energy 

of the coefficients, calculated according to Parseval's Theorem. The energy used as a feature can be all 

from the same level of signal decomposition (called the single-level basis solution), or on each level of 

decomposition, a selection called multiple level basis selection. 

2.  Discrete Wavelet Transform and Parseval’s Theorem 

The energy distribution on the component levels of the recorded signal is determined using DWT and 

Parseval's Theorem. DWT is a  multi-resolution method of non-stationary signals recorded on rotary 

machines. In work [6] Kim used DWT to perform a comparative analysis for detect defects in the 

vibration signal recorded on rotating mechanical systems. Of the methods of analysis in the domain 

time - frequency, DWT is the most efficient method for detecting cracks in the rotation shaft during 

acceleration and deceleration processes. By using the DWT and CWT in the domain time - frequency, 

Ohue et al. in [7] found that a gear element damaged can be identified by changing the intensity of the 

wavelet coefficients. For detect and locate gear tooth defects Omar and Gaoanda proposed the use of a 

dynamic windowing process [8]. DWT was used by Djebala et al. for the detection of defects in 

rolling bearing [9]. Kumar and Singh used the Symlet wavelet as the wavelet function to perform 

DWT on the bearing vibration signal for measuring its outer race defect width [10]. For the multi-fault 

diagnosis of a gear Li et al. they used an integrated method based on DWT, autoregressive (AR) 

model and principal component analysis (PCA). In the analysis, DWT  it was used for denoise the 

vibration signals [11, 12]. DWT was used by Kwak in the paper [13] for detecting defects in the 

cutting tool and machine tool failure by analyzing the wavelet coefficients. Extracting a good set of 

fault-related features from wavelet coefficients helps to identify machine defects in a much effective 

way. For classification of bearings defects and gearbox with high accuracy and stability, Li et al. used 

the slope characteristics extracted from slope logarithmic variances calculated from the DWT 



 

 

 

 

 

 

coefficients [14]. Yu et al. have extracted a cluster-based feature from DWT coefficients and 

probabilistic neural networks for bearing fault detection [15]. Using other techniques, the DWT's 

ability to diagnose mechanics errors has been improved. For example, Castejon et al. developed a 

method for diagnosing errors in two stages, in the first step used a DWT-based multi-resolution 

analysis to extract interesting features from the signals, and in the second stage, to classify the defects 

from bearings in the incipient phase, used the neural network method [16]. 

Because the translation of the wavelet function depends directly on the scale, the translation and 

scaling parameters s and τ in dyadic meshing, are expressed by the relations s=2^i,τ=k2^j.  

DWT is a mathematical function: 
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where symbol     is inner product operation.         is a mother wavelet, expressed by: 
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Through DWT the recorded signal is decomposed by LPF and HPF filters constructed from the 

selected wavelet function      and the corresponding scaling function    , given by the relationships 

[17]: 

 
                    

                    

    ,                                                  (2) 

with            and           

The decomposition results, up to a certain level, are the components of the low and high frequency 

signal: 

                                                                    
                   

                   
                                                        (3) 

      are the approximation coefficients for the low frequency components of the signal, and 

     are the detail coefficients for the high frequency components of the signal. 

Figure 4 shows an example of DWT decomposition of a signal recorded for the intact shaft at 2400 

rpm. It is observed from the detail components that the activity is greatly reduced once the level of 

decomposition or the scale increases. 

Parseval's Theorem establishes an energy distribution on the different levels of decomposition signal 

(frequency bands). 

By integrating the square of the recording signal, its total energy is obtained, according relationship: 

        
  

  
                                                             (4) 

According to the multiresolution analysis, the recorded signals are decomposed, using DWT, into 

components with different frequency bands on each level. After the decomposition, the recorded 

signal can be obtained as the sum of the low-frequency and high-frequency components 
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where   
     is the approximate information and    

     is the detailed information at scale j after the 

discrete wavelet transform at the j times. Taking into account the property of orthogonality of wavelet 

and scaling functions, the signal energy is calculated as the sum of the energies of the detail 

components and the energy of the approximate component at the large-scale 
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The calculated signal energies at the j frequency bands form a vector [E1, E2,… Ej,], which can be 

used to analyze the energy characteristics of recorded signal. This is because that the induced damage 

may suppress or enhanced the recorded signal at some frequency bands when the recorded signal is 

input into a system as excitation, so at some frequency bands may be suppressed while that at others 

may be enhanced. Correspondingly, there is a large difference between the energies calculated before 

and after the occurrence of the damage, the energy being undergoing redistribution on the frequency 

bands of the signal components. 



 

 

 

 

 

 

3.  Mother Wavelet Selection Methods 

In WT, mother wavelets are very important in the analysis, they have different shapes depending on 

the type of application. 

Taking into account the diversity of mother wavelets, it is the problem of selecting them, in order 

to obtain the most accurate results of the various analyzes, which means a good correlation between 

the signal and the mother wavelet. 

From the category of wavelet families, the work uses the following: 

- Haar, Daubechies, Coiflet and Symlets orthogonal wavelets with FIR filters that are defined by a 

scaling coefficient. 

- Biorthogonal wavelets with FIR filters defined by the two scaling coefficients, for reconstruction and 

decomposition respectively. 

Haar wavelet is orthogonal, symmetrical and compact. 

Daubechies wavelet is orthogonal, asymmetrical, introduces a phase distortion, without an explicit 

expression. 

Coiflet wavelet is orthogonal, near symmetrical, compact support, regularity. 

Symlet wavelet is orthogonal, near symmetrical, compact support and regularity. 

Biortogonal wavelet is orthogonal, symmetrical, compact support and regularity. 

As an application for detecting cracks in rotating shafts, the accuracy of the classification, for 

different operating conditions, depends on the decomposition level of the signal and the type of mother 

wavelet used for the analysis. 

About thirteen families of mother wavelets are known, and their use will lead to different results 

for the same wavelet analysis. The use of a particular mother wavelet depends on their properties and 

the type of analysis performed. 

A first selection of mother wavelet is based on a qualitative approach to the properties. The 

following properties of mother wavelet are known: regularity, compact support, symmetry, vanishing 

moment, orthogonality, explicit expression. 

Because the methods in the first category are difficult to use in the analysis of non-stationary signals, a 

quantitative approach to the methods of classification of the mother wavelet is recently used. There are 

several methods used of which we emphasize the most used: Shannon entropy [18], maximum energy 

to entropy ration [19], maximum cross correlation coefficient [20], distribution error [21], minimum 

description length [22], variances [23], genetic algorithm [24], energy of the wavelet coefficients [25], 

vanishing moment, shift variance and regularity [26]. 

The methods of selection of mother wavelet based on qualitative and quantitative approaches 

have been proposed and used in different fields, such as: analyzing power system transients, 

biomedical, engineering acoustic emission, denoise vibration signals, machines rotation fault 

detection, compression of power distribution data, partial discharge signal detection and extraction, 

denoising of ECG signal, image denoising, automatic ultrasonic non-destructive foreign body 

detection and classification, etc. 

In principle, the methods presented for selecting mother wavelet consider that the wavelet 

coefficients reflect the similarity between the signal and the corresponding mother wavelet. The 

conclusion of the study is that certain mother wavelets lead to some performance results in the analysis 

of cracks in the rotating shafts.  

4.  Results 

In order to evaluate the presence of cracks in the rotation shaft, the following steps are gone in this 

paper, using the stand presented in paragraph 1, as follows: 

  1. Shaft preparation in four operating situations: healthy shaft, crack simulated in the incipient phase 

of 16%, intermediate phase of 33% and an advanced phase of 66%; 

   2. Measurement of signals in two bearings, in vertical and horizontal direction at each bearing, at 

three operating speeds 600 rpm, 1200 rpm and 2400 rpm of the shaft, using Bruel & Kjaer equipment; 



 

 

 

 

 

 

   3. The processing of the signals recorded with DWT, using five mother wavelets from MATLAB, 

for decomposition and calculation of the energy associated with each level of decomposition, used to 

accurately diagnose cracks in the rotation shaft. 

In general, it is heavy to find recommendations in the literature as to which function is the best 

for such analyses, but the change of the wavelet functions will certainly have an impact on the energy 

distribution of the decomposed signal energy. The signal is characterized by energy, which represents 

a quantitative measure of it. The signal energy can be calculated by the coefficients of the signal 

wavelet transform for each frequency band (6). The energetic content of each frequency band of the 

signal is a characteristic of the state of the rotation shaft, because it is directly related to the presence 

of the crack or not. 

In this paper, the energy characteristics associated with the different levels of the frequency 

components of the signals, realized with DWT, accept modifications on the respective frequency 

bands, where the characteristics of the signal are concentrated. If there are increases in a frequency 

component of the signal corresponding to a certain scale, the corresponding wave coefficients 

extracted from the signal will have larger values and the energy content will be higher. This is evident 

from table 1.  

 

Table 1. Energy distribution by decomposition levels, using Haar, Db, Sym, Coif, Bior wavelets, 

bearing 1, vertical measurement direction, 2400 rpm 

Wavelet Healthy Crack 66% 
Sym2 (level 6) Ea =  2.7079 

Ed = 18.8891   28.0772   30.2439   

13.6161    4.7488    1.7170 

Ea = 11.7145 

Ed = 19.0446   19.2770   30.1308   13.9261    

3.5093    2.3977 

Sym3 (level 6) Ea =  2.6487 

Ed = 17.6535   28.5610   31.0429   

13.9831    4.5086    1.6022 

Ea = 11.9811 

Ed = 18.5386   18.5100   31.5497   13.9310    

3.2818    2.2079 

Sym4 (level 6) Ea =  2.6163 

Ed = 16.9198   29.0814   31.3643   

14.1335    4.2879    1.5969 

Ea =  12.0171 

Ed =  18.4562   18.0231   32.4325   13.7546    

3.1743    2.1421 

Sym5 (level 6) Ea =  2.6182 

Ed = 16.5586   29.3849   31.4356   

14.2898    4.0781    1.6349 

Ea = 12.1331 

Ed = 18.3644   17.7294   33.1277   13.4184    

3.1362    2.0908 

Sym6 (level 6) Ea =  2.6041 

Ed = 16.3454   29.4733   31.6273   

14.3110    4.0257    1.6132 

Ea = 12.1909 

Ed = 18.3421   17.4739   33.4797   13.3995    

3.0536    2.0603 

Sym7 (level 6) Ea =  2.6000 

Ed = 16.2413   29.6162   31.6643   

14.3178    3.8756    1.6848 

Ea = 12.1704 

Ed = 18.2755   17.5320   33.9135   13.0047    

3.0315    2.0724 

Sym8 (level 6) Ea =  2.5954 

Ed = 16.1006   29.8728   31.5526   

14.3849    3.8634    1.6304 

Ea = 12.2538 

Ed = 18.3013   17.4918   33.9989   12.9569    

2.9858    2.0115 

Haar (level 6) Ea =  2.8763 

Ed = 22.4270   27.9252   27.7888   

12.0087    5.0934    1.8805 

Ea = 10.8458 

Ed = 21.2853   21.2244   26.7027   12.8018    

4.0479    3.0921 

Db2  (level 6) Ea = 2.7079 

Ed =18.8891   28.0772   30.2439   

13.6161    4.7488    1.7170 

Ea = 11.7145 

Ed = 19.0446   19.2770   30.1308   13.9261    

3.5093    2.3977 

Db3  (level 6) Ea = 2.6487 

Ed = 17.6535   28.5610   31.0429   

13.9831    4.5086    1.6022 

Ea = 11.981 

Ed = 18.5386   18.5100   31.5497   13.9310    

3.2818    2.2079 

Db4  (level 6) Ea = 2.6312 

Ed = 17.0050   29.0207   31.1952   

14.2044    4.2723    1.6713 

Ea = 12.0753 

Ed = 18.3832   17.9981   32.4051   13.8200    

3.1473    2.1710 



 

 

 

 

 

 

Db5 (level 6) Ea = 2.6182 

Ed = 16.5992   29.2442   31.5817   

14.2252    4.0673    1.6643 

Ea = 12.1062 

Ed = 18.3537   17.6408   33.1678   13.4723    

3.1347    2.1245 

Db 6  (level 6) Ea = 2.6125 

Ed =16.3415   29.4923   31.5795   

14.3451    4.0271    1.6020 

Ea = 12.1262 

Ed = 18.3552   17.5744   33.4501   13.3592    

3.0736    2.0613 

Db7  (level 6) Ea = 2.6103 

Ed = 16.1893   29.7503   31.6009   

14.2805    3.9221    1.6467 

Ea = 12.0975 

Ed = 18.3373   17.5561   33.8881   13.0827    

3.0026    2.0357 

Db8  (level 6) Ea = 2.5974 

Ed = 16.1059   29.8280   31.5970   

14.4199    3.7676    1.6843 

Ea = 12.0701 

Ed = 18.3055   17.4079   34.1135   12.9922    

3.0624    2.0483 

Db9  (level 6) Ea = 2.5865 

Ed = 16.0512   29.8600   31.7221   

14.3762    3.7726    1.6313 

Ea = 12.1195 

Ed = 18.2782   17.4535   34.4691   12.6659    

2.9861    2.0278 

Db10 (level 6) Ea =  2.5830 

Ed = 16.0002   30.0043   31.6229   

14.4052    3.7567    1.6278 

Ea = 12.2073 

Ed = 18.2660   17.4830   34.3695   12.7473    

2.9526    1.9742 

Coif1 (level 6) Ea =  2.6951 

Ed = 18.7093   28.2940   30.3274   

13.5747    4.7645    1.6351 

Ea = 11.7781 

Ed = 19.0324   19.2910   30.2226   13.8274    

3.4790    2.3696 

Coif2 (level 6) Ea = 2.6265 

Ed = 16.8355   29.1516   31.2626   

14.2299    4.2806    1.6131 

Ea = 12.1645 

Ed = 18.4091   17.9152   32.4844   13.7639    

3.1387    2.1243 

Coif3 (level 6) Ea = 2.6155 

Ed =16.2854   29.6480   31.5778   

14.2526    3.9729    1.6478 

Ea = 12.1091 

Ed = 18.3413   17.5825   33.6942   13.1909    

3.0289    2.0531 

Coif4 (level 6) Ea = 2.5793 

Ed = 16.0601   29.9294   31.5725   

14.4383    3.7441    1.6762 

Ea = 12.1405 

Ed = 18.3073   17.4734   34.1941   12.8409    

3.0359    2.0080 

Coif5 (level 6) Ea = 2.5846 

Ed = 15.9497   30.0840   31.6566   

14.4274    3.6123    1.6854 

Ea = 12.2063 

Ed = 18.2766   17.4182   34.6974   12.4292    

2.9918    1.9805 

Bior1.1 (level 6) Ea = 2.8763 

Ed = 22.4270   27.9252   27.7888   

12.0087    5.0934    1.8805 

Ea = 10.8458 

Ed = 21.2853   21.2244   26.7027   12.8018    

4.0479    3.0921 

Bior1.3 (level 6) Ea = 2.4676 

Ed = 20.3098   28.8525   29.6146   

12.8597    4.2943    1.6014 

Ea = 11.4090 

Ed = 19.0369   20.7422   29.1584   13.2245    

3.5579    2.8710 

Bior1.5 (level 6) Ea = 2.3487 

Ed = 19.3415   29.5974   30.0767   

13.0584    3.9933    1.5841 

Ea = 11.4935 

Ed = 18.1963   20.7581   30.4035   12.7909    

3.4979    2.8597 

Bior2.2 (level 6) Ea = 3.5254 

Ed = 9.2578   17.8310   38.2466   

17.0815   10.1610    3.8968 

Ea = 12.9553 

Ed =  9.6586   11.6838   32.7780   22.5184    

6.8170    3.5888 

Bior2.4 (level 6) Ea=  2.7325 

Ed = 9.8973   19.9655   40.4889   

16.8104    7.6781    2.4272 

Ea = 13.4341 

Ed = 10.0476   11.9521   34.6989   22.1663    

5.2766    2.4245 

Bior2.6 (level 6) Ea = 2.6057 

Ed = 9.9947   21.0594   40.7155   

16.5171    6.8683    2.2394 

Ea =13.7706 

Ed =10.1495   12.3380   35.4544   21.0431    

4.9447    2.2997 

Bior2.8 (level 6) Ea = 2.5545 

Ed = 9.9722   21.5181   41.0182   

16.2563    6.4467    2.2341 

Ea = 13.9037 

Ed = 10.2072   12.5424   36.4274   19.8399    

4.7986    2.2809 

Bior3.1 (level 6) Ea = 35.8338 Ea = 37.0660 



 

 

 

 

 

 

Ed = 1.0048    2.6320   14.0626    

8.0576   20.5449   17.8643 

Ed =  1.2551    2.2293   13.1754   12.0532   

18.0481   16.1730 

Bior3.3 (level 6) Ea =  6.0304 

Ed =  3.5497    8.8406   38.9334   

17.3025   16.8710    8.4725 

Ea = 11.9876 

Ed =  3.9817    5.7563   32.0715   28.8763   

11.1152    6.2113 

Bior3.5 (level 6) Ea = 2.8396 

Ed = 4.6610   11.7934   46.4766   

18.3662   11.8726    3.9905 

Ea = 12.0382 

Ed =  4.8219    6.5766   35.7598   30.0214    

7.8267    2.9553 

Bior3.7 (level 6) Ea = 2.4452 

Ed = 5.0521   13.0203   48.5583   

17.7560   10.1086    3.0595 

Ea = 12.5551 

Ed =  5.0973    6.8491   37.2344   28.8436    

7.0911    2.3294 

Bior3.9 (level 6) Ea = 2.3902 

Ed = 5.2336   13.7792   48.9849   

17.4526    9.3121    2.8473 

Ea = 12.9511 

Ed = 5.2637    7.1145   37.6616   27.8921    

6.8874    2.2295 

Bior4.4 (level 6) Ea = 2.6486 

Ed = 17.4232   25.7044   33.5425   

14.1132    4.8931    1.6749 

Ea = 11.4648 

Ed = 19.6150   15.6994   32.0212   15.8176    

3.4687    1.9134 

Bior5.5 (level 6) Ea = 2.5251 

Ed = 27.4818   29.3294   25.4712   

11.0393    3.0088    1.1444 

Ea = 9.1910 

Ed = 32.1011   18.1207   26.7523   10.2022    

2.1549    1.4777 

Bior6.8 (level 6) Ea = 2.6429 

Ed = 15.6140   26.6300   34.0241   

14.7497    4.5592    1.7802 

Ea =12.6835 

Ed =17.6980   15.3398   33.9881   14.8620    

3.4332    1.9955 

 

Table 1 shows the percentage distribution of energy on different frequency bands, using 37 mother 

wavelets (haar, db2-db10, coif1-coif5, sym2-sym8 and bior1.1-bior6.8). Of all the analyzed cases, in 

the paper, the following operating conditions were considered: the accelerometer is positioned in the 

vertical direction in bearing one (figure 1), state the healthy shaft and with 66% crack, the shaft speed 

being 2400 rpm. 

 
Figure 3. DWT for the discrete signal with 524288 samples, using the  

sym6 wavelet function (levels 6) 

 

The recorded signals were decomposed on six levels using DWT, for which the approximation 

coefficients a6 and the detail coefficients d1, d2, d3, d4, d5 and d6 were obtained. Using the wenergy 

function from MATLAB to determine the energy distribution on each level (frequency band) of the 



 

 

 

 

 

 

signal, the presence of cracks in the rotation shaft was identified. The distribution of energy levels 

using sym6 wavelet function is represented in figure 3. 

In all cases of use of orthogonal mother wavelet functions, for the intact tree, the signal energy is 

concentrated on the high frequency decomposition levels Ed1, Ed2 and Ed3 (approximately 75%). It is 

also observed that the energy, for cracked shafts, is redistributed on lower levels of signal 

decomposition (Ea reaches from 2% to 12%). From the use of orthogonal mother wavelets it can be 

seen that some variations between the energy levels are same (Ed2 reaches from 29% to 17% for 

cracked shaft), which means that they are recommended for diagnosis of cracks in the rotation shafts 

(except Haar wavelet) (figure 4). 

 

 
 

Figure 4. Energy distribution diagram of healthy shaft and crack shaft using sym6 wavelet 
 

Of the biorthogonal wavelet functions only bior4.4 and bior6.8 have redistributions similar to the 

orthogonal functions, in addition the others have decreasing variations on the 3rd frequency band 

(Ed3), and all have an increase on the low frequency band Ea. 

In tables 2 and 3 are presented examples looking influence on the accuracy of the results, of the 

measuring point position (bearing 1 or bearing 2), measurement direction (vertically or horizontal), the 

condition of the shaft with the intermediate cracks (16%, 33% and 66 %) and different speeds for the 

shaft (600 rpm, 1200 rpm and 2400rpm). 

Table 2. 

Vertically direction 
Sym6 (level 6) Bearing 1 (channel 2) Bearing 2 (channel 3) RPM 

Healthy Ea = 0.5243 

Ed = 12.4836   28.3266   21.0977   

19.8910   15.5373    2.1395 

Ea = 0.0667 

Ed = 30.3147   53.6964    5.0422    

4.8233    5.5123    0.5444 

600rpm 

Ea = 1.1715 

Ed = 14.9350   32.2342   30.7813   

14.2274    5.2754    1.3752 

Ea =  0.1782 

Ed = 42.7567   48.4268    4.8395    

2.2909    1.1316    0.3764 

1200rpm 

Ea =  2.6041 

Ed = 16.3454   29.4733   31.6273   

14.3110    4.0257    1.6132 

Ea = 0.1256 

Ed = 45.9964   47.3796    4.5115    

1.1488    0.5277    0.3104 

2400rpm 

Crack 16% Ea =  0.3424 

Ed = 10.5937   23.6031   33.2985   

15.8923   14.2437    2.0263 

Ea = 0.0550 

Ed = 37.8038   50.0591    6.8680    

2.3798    2.5304    0.3039 

600rpm 

Ea = 0.8996 

Ed = 11.4858   29.6356   33.6638   

15.7774    7.7186    0.8192 

Ea =  0.1186 

Ed = 38.4436   50.6974    5.9324    

2.8681    1.7530    0.1869 

1200rpm 

Ea =  3.6087 

Ed = 13.9961   27.3231   33.2146   

15.5599    4.5317    1.7659 

Ea = 0.1448 

Ed = 43.0245   50.2342    4.8481    

1.0464    0.4955    0.2065 

2400rpm 

Crack 33% Ea = 0.3794 Ea = 0.0434 600rpm 

1 2 3 4 5 6 7 

Health 16.3454 29.4733 31.6273 14.311 4.0257 1.6132 2.6041 

Crack 66% 18.3421 17.4739 33.4797 13.3995 3.0536 2.0603 12.1909 
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Ed = 13.4981   31.2572   30.6373   

13.0282    9.7596    1.4403 

Ed = 33.2259   54.8752    6.6820    

2.3716    2.5217    0.2803 

Ea = 1.9432 

Ed = 12.3036   32.6857   32.8658   

13.1559    6.1981    0.8477 

Ea =  0.1969 

Ed = 37.3893   51.4728    6.3834    

2.7296    1.6199    0.2081 

1200rpm 

Ea =  6.8933 

Ed = 12.4246   29.6137   32.9345   

12.6907    3.6927    1.7505 

Ea =  0.2392 

Ed = 38.4749   54.0475    5.5387    

1.0763    0.4508    0.1726 

2400rpm 

Crack 66% Ea =  0.8781 

Ed =  16.4028   24.0940   31.8196   

12.8958   11.9284    1.9815 

Ea =  0.0740 

Ed = 30.4103   55.0416    6.1347    

3.7235    4.2223    0.3936 

600rpm 

Ea = 3.6406 

Ed = 16.7156   29.2970   34.2937   

11.0638    4.0814    0.9079 

Ea =  0.3049 

Ed = 37.2893   52.4191    5.8979    

2.5030    1.3808    0.2051 

1200rpm 

Ea = 12.1909 

Ed = 18.3421   17.4739   33.4797   

13.3995    3.0536    2.0603 

Ea = 1.0137 

Ed = 36.0831   55.7215    5.2467    

1.0208    0.5540    0.3602 

2400rpm 

 

Table 3. 

Horizontal direction 
Sym6 (level 6) Bearing 1 (channel 2) Bearing 2 (channel 3) RPM 

Healthy Ea = 8.7733 

Ed =13.0208   26.5098   22.8175   

16.8328    9.9481    2.0977 

Ea = 0.4359 

Ed = 27.8674   36.9514   20.2941    

8.4622    5.3505    0.6386 

600rpm 

Ea = 11.8496 

Ed = 13.7266   32.7663   23.6637   

12.7319    3.5608    1.7012 

Ea = 1.4286 

Ed = 29.5587   36.2749   20.5808    

8.2299    2.9412    0.9859 

1200rpm 

Ea = 12.1909 

Ed = 18.3421   17.4739   33.4797   

13.3995    3.0536    2.0603 

Ea = 0.5063 

Ed = 33.1121   44.7731   17.9015    

2.6264    0.6095    0.4710 

2400rpm 

Crack 16% Ea = 7.2992 

Ed = 12.1625   29.7926   23.6622   

16.3115    8.5724    2.1995 

Ea = 0.3670 

Ed = 28.1670   37.0997   21.2007    

8.1167    4.3811    0.6679 

600rpm 

Ea =  12.8710 

Ed = 12.8900   32.6105   23.9067   

12.0031    3.8011    1.9177 

Ea = 1.9613 

Ed = 28.7822   36.4418   20.3066    

8.0582    3.1456    1.3044 

1200rpm 

Ea =  25.6363 

Ed = 11.6085   28.6883   20.7118    

9.8345    1.6398    1.8808 

Ea =  0.4944 

Ed = 33.5584   44.2654   17.4796    

2.9462    0.7496    0.5066 

2400rpm 

Crack 33% Ea = 9.2147 

Ed = 11.2746   26.1303   22.4714   

15.8464   12.4215    2.6410 

Ea =  0.4454 

Ed = 29.5364   37.3886   17.2337    

8.4573    6.1647    0.7738 

600rpm 

Ea = 12.6210 

Ed = 12.1086   33.0525   24.2551   

11.6056    4.5956    1.7616 

Ea =  1.6281 

Ed = 31.3377   36.0611   19.3172    

7.3527    3.0807    1.2225 

1200rpm 

Ea = 21.0275 

Ed = 11.1743   29.4365   23.6531   

10.1344    2.5192    2.0550 

Ea = 0.5290 

Ed = 31.6633   45.2728   18.3519    

2.9206    0.7400    0.5223 

2400rpm 

Crack 66% Ea = 8.4105 

Ed = 12.7789   28.2805   22.1689   

16.4680    9.5656    2.3276 

Ea =  0.4073 

Ed = 26.7722   39.2487   21.0220    

7.2478    4.6577    0.6444 

600rpm 

Ea = 14.8772 

Ed = 11.9306   32.7154   21.7701   

11.5244    4.7340    2.4484 

Ea =  2.4103 

Ed = 27.3860   36.8452   19.1663    

8.3580    3.9476    1.8865 

1200rpm 



 

 

 

 

 

 

Ea = 28.6831 

Ed = 15.5365   20.0448   19.6481    

9.4085    2.7243    3.9547 

Ea = 1.6446 

Ed = 30.8186   43.2380   18.6814    

3.2102    0.9662    1.4411 

2400rpm 

 

With the increase of the speed from 600 rpm to 2400 rpm, the energy of the band corresponding to 

the defect in the shaft (crack) increases, due to the increase of the coefficients of the signal 

transformation at the frequency bands specific to the defect. Because the energy content in the 

frequency bands is a rough characteristic of the signal, it is not sensitive in the early stages of the crack 

in the shaft (see the 16% stage). 

The energy characteristic of the crack frequency is influenced by factors such as shaft speed, 

location of measurement sensors, shaft status, which in turn will influence the quality of the analysis.  

5.  Discussions and conclusions 

In the literature there are few recommendations for the selection of mother wavelet necessary for a 

more accurate analysis of phenomena. Signals with sharp changes are better analyzed using irregular 

wavelet functions, which are responsible for local analyse (Haar, Daubechies, Coiflet, Symlet, 

Biorthogonal). Of these, the optimal wavelet mother for signal analysis is the one with the highest 

energy at the highest decomposition level. The energy distributed on each frequency band of the 

signal, used as a criterion for choosing mother wavelet for the classification of cracks in rotating shafts 

also depends on the level of decomposition. Due to the largest energy variations in the detection of 

cracks in shaft, Daubechies, Coiflet, Symlet, Biorthogonal4.4 and Biorthogonal6.8 mother wavelet are 

the most efficient. 
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