
 

Volume XXIII 2020 

ISSUE no.2          

MBNA Publishing House Constanta 2020 

  
  
 

doi: 10.21279/1454-864X-20-I2-006    
SBNA© 2020. This work is licensed under the CC BY-NC-SA 4.0 License 

 

 

SBNA PAPER • OPEN ACCESS 

 

Incompressible models and low mach number 

expansions 

 To cite this article: Aurel Gherghina and Paul Burlacu,  Scientific Bulletin of Naval Academy, Vol. XXIII 

2020, pg.48-52.  

 

 

 

 

 

Available online at www.anmb.ro 

 

ISSN: 2392-8956; ISSN-L: 1454-864X 

http://www.anmb.ro/


 

 

 

 

 

 

Incompressible models and low mach number expansions 

Aurel Gherghina, Paul Burlacu 

Military Staff, Bucharest Romania; Naval Academy Mircea cel Bătrân, Constanța 

paul.burlacu@anmb.ro 

Abstract. In the field of CFD, the incompressibility assumption is very important for 

applications since many common fluids (liquids) are incompressible or only very slightly 

compressible. The purpose of this paper is to present some mathematical properties of 

incompressible models aim and the way of expressing this type of number expansions. 

1.  Introduction 

 

Mathematically, the incompressibility condition means:  

 

𝑑𝑖𝑣𝑉 = 0 (1.1) 
 

Therefore, the volume occupied by a group of fluid particles at the initial time remains 

constant during the flow. The continuity equation written as: 

 

𝜌𝑡 + 𝑢𝜌𝑥 + 𝑣𝜌𝑦 + 𝑤𝜌𝑧 + 𝜌(𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧) = 0 

leads to  

 
𝐷𝜌

𝐷𝑡
= 𝜌𝑡 + 𝑉 ⋅ 𝛻𝜌 = 0 (1.2) 

 

This means that if the density is constant initially and on the boundaries from where the fluid 

comes inside the domain under consideration it remains so. This is equivalent to say that the 

fluid is homogeneous. 

Further, having in mind the previous derivation of the compressible models and their EOS and 

constitutive models, it could be useful to make a distinction between models obtained by: 

• Incompressibility hypothesis. 

• Low Mach number expansions. 

We emphasize here that the incompressibility hypothesis does not impose an explicit restriction 

on the magnitude of the velocity. Moreover, the incompressible models aim to describe liquids 

where compression effects are neglected and the density is taken as constant. For example, it is 

not rational to expect from an incompressible model to describe accurately the propagation of 

acoustic or pressure waves through liquids. This is due the fact that the incompressibility 

condition (1.1) is normally associated with other working hypothesis made on the EOS and on 

the fluid transport properties. Further, the energy equation is firmly ‘decoupled’ from the 



 

 

 

 

 

 

continuity and momentum equations, by stating that the temperature field can be calculated 

separately, after the velocity and pressure fields have been determined. 

On the other side, the compressible models presented in the previous chapter are valid 

for gases. Starting from the compressible models it is rational to discuss about the low Mach 

number expansions. The precise definition of the Mach number is: 𝑀 =
|𝑽|

√𝑝′(𝜌)
. Therefore, 

letting M go to zero means that, keeping constant values for the density and the temperature, 

the magnitude of the velocity is a small parameter. An asymptotic analysis starting from the 

Navier-Stokes equation derived for a compressible ideal gas shows that there is a lack of 

consistency between compressible models and ‘incompressible’ submodels, in the presence of 

heat conduction. A possible physical explanation is the following assertion: compressible 

models are valid for gases and the low Mach number limit yields particular incompressible 

submodels. These particular submodels are definitively determined by the EOS and transport 

properties chosen for the gas. Further, such an asymptotic analysis reveals that the 

incompressible submodel is very sensitive to the errors in the pressure calculation. 

In what follows, we assume the fluid to be incompressible, homogeneous, non-heat 

conducting and viscous, with constant coefficient of viscosity 𝜂. Body forces are also neglected, 

only for simplicity. We study three mathematical formulations of the governing equations in 

Cartesian coordinates and restrict our attention to the two-dimensional case. 
 

1.2 The Incompressible Navier-Stokes Equations in Primitive Variable Form 

 

The primitive variable formulation of the incompressible two-dimensional Navier-Stokes 

equations is given by: 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 +
1

𝜌
𝑝𝑥 = 𝑣[𝑢𝑥𝑥 + 𝑢𝑦𝑦] 

                               𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 +
1

𝜌
𝑝𝑦 = 𝑣[𝑣𝑥𝑥 + 𝑣𝑦𝑦] (1.3) 

 

where the kinematic viscosity is: 

 

                                            𝑣 =
𝜂

𝜌
                                                             (1.4) 

 

Recall that 𝜂 is the coefficient of shear viscosity. We have a set of three equations for 

the three unknowns u, v, p, the primitive variables. This is a mixed elliptic-parabolic system. 

Due to the mixed nature of the mathematical model, the solution cannot be obtained directly 

via time-marching algorithms. In principal, given a domain along with initial and boundary 

conditions for the equations one should be able to solve this problem using the primitive 

variable formulation. 

 

1.3 The Incompressible Navier-Stokes Equations in Stream-Function Vorticity Form 

The stream-function vorticity formulation is another way of expressing the incompressible 

Navier-Stokes equations. This formulation is attractive for the two-dimensional case but not so 

much in three dimensions, in which the role of a stream function is replaced by that of a vector 

potential.  The magnitude of the vorticity vector can be written as: 

𝜍 = 𝑣𝑥 − 𝑢𝑦 (1.5) 



 

 

 

 

 

 

 

Introducing a stream function 𝛹 we have for the velocity components: 𝑢 = 𝜓𝑦 , 𝑣 = −𝜓𝑥.  

By combining the momentum equations so as to eliminate the pressure p, and using 

Error! Reference source not found. we obtain the vorticity transport equation: 

 

𝜍𝑡 + 𝑢𝜍𝑥 + 𝑣𝜍𝑦 = 𝑣[𝜍𝑥𝑥 + 𝜍𝑦𝑦] (1.6) 

 

This is an advection-diffusion equation of parabolic type. In order to solve it, one 

requires the solution for the stream function 𝜓, which is in turn related to the vorticity 𝜍 via: 

 

𝜓𝑥𝑥 + 𝜓𝑦𝑦 = −𝜍 (1.7) 

 

This is called the Poisson equation and is of elliptic type. There are numerical schemes 

to solve (1.5-1.7) using the apparent decoupling of the parabolic-elliptic problem to transform 

it into the parabolic equation or the vorticity and the elliptic equation for the stream function. 

A relevant observation, from the numerical point of view, is that the convection terms of the 

left-hand side of equation (1.6) can be written in conservative form and hence we have: 

 

 𝜍𝑡 + (𝑢𝜍)𝑥 + (𝑣𝜍)𝑦 = 𝑣[𝜍𝑥𝑥 + 𝜍𝑦𝑦] (1.8) 

 

This follows from the fact that 𝑢𝑥 + 𝑣𝑦 = 0, which was also used to obtain. 

 

1.3 The Incompressible Navier-Stokes Equations in Artificial Compressibility Form 

The artificial compressibility formulation is yet another approach to formulate the 

incompressible Navier-Stokes equations and was originally put forward by Chorin, for the 

steady case. Let us consider the two-dimensional incompressible Navier-Stokes equations 

written in non-dimensional form: 

                                         𝑢𝑥 + 𝑣𝑦 = 0                                       (1.9) 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑝𝑥 = 𝛼[𝑢𝑥𝑥 + 𝑢𝑦𝑦] 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑝𝑦 = 𝛼[𝑣𝑥𝑥 + 𝑣𝑦𝑦]                            (1.10) 

 

where the following non-dimensionalisation has been used: 

𝑢 ←
𝑢

𝑉∞
, 𝑣 ←

𝑣

𝑉∞
, 𝑝 ←

𝑝

𝜌∞𝑉∞2
, 

𝑥 ←
𝑥

𝐿
, 𝑦 ←

𝑦

𝐿
′𝑡 ←

𝑡𝑉∞
𝐿

′ 

𝛼 =
1

𝑅𝑒𝐿
, 𝑅𝑒𝐿 =

𝑉∞𝐿

𝑉∞
. 

 

Multiplying by the non-zero parameter 𝑐2and adding an artificial compressibility term 𝑝𝑡the 

first equations reads: 

 

 

 𝑝𝑡 + (𝑢𝑐2)𝑥 + (𝑣𝑐2)𝑦 = 0 (1.11) 

By using equation (1.11) the convective terms in the momentum equations can be written in 

conservative form, so that the modified system becomes: 



 

 

 

 

 

 

 

𝑝𝑡 + (𝑢𝑐2)𝑥 + (𝑣𝑐2)𝑦 = 0 

𝑢𝑡 + (𝑢2 + 𝑝)𝑥 + (𝑢𝑣)𝑦 = 𝛼[𝑢𝑥𝑥 + 𝑢𝑦𝑦] 

                               𝑣𝑡 + (𝑢𝑣)𝑥 + (𝑣2 + 𝑝)𝑥 = 𝛼[𝑣𝑥𝑥 + 𝑣𝑦𝑦] (1.12) 

 

The equations can be written in compact form as 

 

 𝑈𝑡 + 𝐹𝑥(𝑈) + 𝐺𝑦(𝑈) = 𝑆(𝑈) (1.13) 

 

where the vectors of unknowns, fluxes and source terms are: 

 

𝑈 = [
𝑝
𝑢
𝑣

] , 𝐹 = [
𝑐2𝑢

𝑢2 + 𝑝
𝑢𝑣

] , 𝐺 = [
𝑐2𝑣
𝑢𝑣

𝑣2 + 𝑝
] , 𝑆 = [

0
𝛼(𝑢𝑥𝑥 + 𝑢𝑦𝑦)

𝛼(𝑣𝑥𝑥 + 𝑣𝑦𝑦)
] (1.14) 

 

The above equations are called the artificial compressibility equations. Here c2 is the artificial 

compressibility factor, usually taken as a constant parameter. The ‘source’ term vector in this 

case is a function of second derivatives. Note that the modified equations are equivalent to the 

original equations in the steady state limit only. The left-hand side of the artificial 

compressibility equations form a non-linear hyperbolic system.  

More recently, new formulations have been proposed for the solution of steady and unsteady 

incompressible Navier-Stokes equations. Since time-marching methods cannot be applied 

directly, the system (1.12) must be transformed into a more convenient one. The dual time 

approach requires the addition of derivatives of a fictitious pseudo-time 𝜏 to each of the three 

equations to give: 
1

𝛽2
𝑝𝜏 + 𝑝𝑡 + (𝑢)𝑥 + (𝑣)𝑦 = 0 

𝑢𝜏 + 𝑢𝑡 + (𝑢2 + 𝑝)𝑥 + (𝑢𝑣)𝑦 = 𝛼[𝑢𝑥𝑥 + 𝑢𝑦𝑦] 

                                            𝑣𝜏 + 𝑣𝑡 + (𝑢𝑣)𝑥 + (𝑣2 + 𝑝)𝑥 = 𝛼[𝑣𝑥𝑥 + 𝑣𝑦𝑦]                          (1.15) 

 

where 𝛽 is a parameter and the term added to the continuity equation has the same form as the 

basic artificial compressibility method. A steady-state solution in pseudo-time (
𝜕𝑝

𝜕𝜏
,

𝜕𝑢

𝜕𝜏
,

𝜕𝑣

𝜕𝜏
→ 0) 

corresponds to an instantaneous unsteady solution in real time. A recommended value for the 

parameter 𝛽 in the case the governing equations are written in dimensionless form is 𝛽 ∼ 𝛩(1). 

The convective part of the system (1.15) is of hyperbolic type and therefore a time-marching 

solution procedure is possible. 
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