

Volume XXIII 2020

ISSUE no.1

MBNA Publishing House Constanta 2020

doi: 10.21279/1454-864X-20-I1-031
SBNA© 2020. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER • OPEN ACCESS

Secure Document Search in Cloud Computing using

MapReduce

 To cite this article: Stefania Loredana Nita, Marius Iulian Mihailescu and Ciprian Racuciu, Scientific

Bulletin of Naval Academy, Vol. XXIII 2020, pg.231-235.

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

http://www.anmb.ro/

Secure Document Search in Cloud Computing using

MapReduce

Stefania Loredana Nita1; Marius Iulian Mihailescu2; Ciprian Racuciu3

1Computer Science Department, University of Bucharest;
2R&D Department, Dapyx Solution Ltd.;
3Computer Science Department, «Titu Maiorescu» University

stefanialoredanani@gmail.com; marius.mihailescu@hotmail.com;

ciprian.racuciu@gmail.com

Abstract. Nowadays, cloud computing is an important technology, which is part of our daily

lives. Moving to cloud brings some benefits: create new applications, store large sets of data,

process large amount of data. Individual users or companies can store own data on cloud (e.g.

maritime, environmental protection, physics analysis etc.). An important thing before storing in

cloud is that data needs to be encrypted, in order to keep its confidentiality. Among these, users

can store encrypted documents on cloud. However, when owner needs a specific document,

they should retrieve all documents from cloud, decrypt them, chose the desired document,

encrypt again and finally store back encrypted documents on cloud. To avoid these entire steps,

a user can choose to work with searchable encryption. This is an encryption technique, where

key words (or indexes) are associated to encrypted documents, and when the owner needs a

document, he/she only needs to search throw key words and then retrieve the documents that

have associated the desired keywords. An important programming paradigm for cloud

computing is MapReduce, which allows high scalability on a large number of servers in a

cluster. Basically, MapReduce works with (key, value) pairs. In the current study paper, we

describe a new technique through which a user can extract encrypted documents stored on

cloud servers based on key words, using searchable encryption and MapReduce.

1. Introduction

Cloud computing represents an important technology nowadays, which has growth constantly in the IT

environment. Cloud computing is so powerful, it can host or make working other technologies, such as

Internet of Things (IoT), artificial intelligence (AI), or blockchain. There are more reasons for which

cloud computing is attractive for both companies and individual users: scalability, reliability,

elasticity, costs.

Still, due to its characteristics, cloud computing has some security issues, inherited from its

components. To overcome these concerns, the research community proposed different techniques

through which cloud computing can be securely used. One of these technique is searchable encryption

(SE), which allow keyword searches over the encrypted data. For example, the staff from a medical

center may search for a patient's data into a large amount of medical encrypted data stored in a cloud

environment. In this way, the patient's data remain confidential, being read only by authorized staff.

Cloud computing has a great potential, which allows many complex computations. An important

model that is widely used in cloud computing is MapReduce, which processes and generates large data

sets in parallel and distributed over a cluster. The data in MapReduce model is stored into Hadoop

mailto:stefanialoredanani@gmail.com
mailto:marius.mihailescu@hotmail.com

Distributed File System (HDFS). This is the reasons for which we use an MapReduce implementation

along with a general searchable encryption scheme.

In the current study, we describe a general technique through which the search process of a

searchable encryption scheme becomes faster, based on MapReduce model. Further, the paper is

organized as follows: in the remaining section we present some concepts about searchable encryption

and MapReduce, in section 2 we present the current state of the art for searchable encryption, the in

the next section 3 we present the framework. Lastly, we will see some conclusions.

1.1. Searchable Encryption

Searchble encryption (SE) schemes are that schemes that allow search queries over encrypted data.

There are two types of searchable encryption schemes: symmetric searchable encryption (SSE) and

public-key encryption with keyword search (PEKS). In SSE just one key is used for both encryption

and decryption and for the algorithms that require a key, namely a secret key, while in PEKS two keys

are used, a public key for encryption and a secret key for decryption.

The entities that are involved in a SE scheme are: the data owner (this user owns the data, prepares

and encrypts the data and send it to the server, establishes who may submit trapdoors to server), the

data user (this user may submit trapdoor to the server and eventually to decrypt the result) and the

server (stores the data in encrypted format and performs the search process).

Further, we present the algorithms in PEKS. The public-key searchable encryption schemes contain

the following time polynomial algorithms:

 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆) → (𝑘𝑝, 𝑘𝑠): The input for this algorithm is a security parameter 𝜆 and the output

is a pair of keys (𝑘𝑝, 𝑘𝑠). These keys are needed in different algorithms in the PEKS scheme.

 𝐸𝑛𝑐(𝑘𝑝, 𝐷) → 𝐶: This is the encryption algorithm, whose input is: the public key 𝑘_𝑝 and a

set of plan documents 𝐷𝑜𝑐 = { 𝑑1, … , 𝑑𝑛 }. The output is the encrypted list = {𝑐1, … , 𝑐𝑛 },

where 𝑐𝑖 repents the document 𝑑𝑖 , 𝑖 = 1 … 𝑛 in encrypted format.

 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑(𝐷𝑖, 𝑤, 𝐾𝑝𝑢𝑏) → 𝐼 : Data owner runs this algorithm in order to create an index

structure, which will keep the indexes of the documents. The algorithm takes as input the

document 𝐷𝑖, the keyword w that describes the document and the public key 𝐾𝑝𝑢𝑏. The result

is an index structure 𝐼 with the indexes associated to documents.

 𝑇𝑟𝑝𝑑(𝑘𝑠, 𝑤) → 𝑡𝑤: When the data user wants to search for a keyword, he/she run the

trapdoor algorithm, whose result will be submitted to server. The input for trapdoor is the

secret key 𝑘𝑠 and the desired keyword w while the output is the value 𝑡𝑤.

 𝑇𝑒𝑠𝑡 (𝑘𝑝, 𝑡𝑤 , 𝐸𝑛𝑐(𝑘𝑝, 𝑤′)) → 𝑏: The input for the Test algorithm is the public key 𝑘𝑝, the

trapdoor for 𝑤 and the encryption of an word 𝑤′. Th output will be 𝑏 ∈ {0, 1}, with 𝑏 = 1 if

𝑤′ = 𝑤 or 𝑏 = 0, otherwise.

 𝐷𝑒𝑐(𝑘𝑠, 𝐶) → 𝐷: Data user decrypts the encrypted document 𝐶, using the private key,

resulting the document 𝐷 in plain text.

1.2. MapReduce

MapReduce represents a programming model, designed predominantly for large amounts of data. It

consist in algorithms that run in parallel, distributed on a cluster. This model is based on nodes that

will perform the operations, which are classified in one master node and the rest of the nodes are

called slaves.

The initial phase in MapRreduce is to scan the input from the user and to distribute it across the

cluster. When the user uploads his/her files into the cloud, the initial phase will split the input into

more InputSplits, of a predefined size 𝑠𝐼𝑆 (given by a parameter of system). If the total size of the input

is 𝑠𝑇, then the number of slave nodes is equal to ⌈
𝑠𝑇

𝑠𝐼𝑆
 ⌉, because every slave will receive one block

from split inputs.

Map. In the map phase the data is processed. In this phase, the following will happen: the slave

nodes will transform into "mapper" nodes and every mapper will process its own input. In this phase,

the mappers will initially apply Scan function on the input, resulting a list of pairs in the form (key,

value). Next, the mappers will apply the Map function, which will lead to an intermediary list of pairs

(key, value).

Reduce. The input for the reduce phase is the list of all intermediary pairs from all mappers. In this

phase, the slave nodes will transform into "reducer" nodes. Every reducer will apply the reduce

function, in which a reducer is selected for every pair with the same key. The output is written into a

file and sent to user.

2. Related Work

In order to keep the security, but a fast search too, more encryption schemes with keyword search for

cloud environment were proposed. The former SE scheme was proposed in [1], where the proposed

scheme achieved controlled searching (only authorized users may submit trapdoor to the server),

hidden query (the plain query is hidden, such that the server cannot "see" it) and query isolation (the

server is allowed to "see" only the results - in encrypted format - in the search process). The scheme

proposed in [1] is a SSE scheme. The first PEKS scheme was proposed in [2], in which the authors

used billinear Diffie-Hellman or trapdoor permutation to generate the public key. the scheme in [2] is

not too efficient, because the desired keyword is compared with every encrypted keyword in all

documents.

In [3], the authors proposed the scheme PRISM, in which the task of searching for keywords is

expressed as parallel instances of private information retrieval (PIR) for small amounts of data. The

MapReduce model is used in this way: the mappers will solve the PIR instances, resulting a list of

(key, value) pairs, while the reducers will take this list and aggregate it.

In [4], the authors proposed a modified version of MapReduce, namely 𝑀2𝑅, based on two

remarks: 1) on an arbitrary node, the code that performs I/O or management work (such as scheduling)

may be outside of TCB. Based on this remark, the authors developed four algorithms compatible with

the MapReduce model, representing the trusted logic in TCB that will be ran by every node into a

secure environment. 2) the data is exchanged and executed between mappers and reducers following a

specific procedure. Based on this remark, the authors constructed a secure shuffle with a high level of

security and more performing that ORAM solutions.

The recent works focuses on forward and backward privacy for dynamic SE schemes. Forward

privacy means that the upload operation does not reveal a priori any information about what is

contains (update is also performed on encrypted data) and backward privacy means that the delete

operation does not reveal a posteriori any information about the deleted elements (delete is also

performed on encrypted data). Some works that achieve forward and/or backward privacy are: [5], [6],

[7].

3. The Proposed Framework

In this part of the study we describe how our framework works. Let's suppose that the data owner

generated the pair of keys using KeyGen for an arbitrary encryption scheme, encrypted the documents

that he/she owns using the Enc algorithm of the chosen encryption scheme and stored the documents

in an encrypted format on a cloud server, which will organize the encrypted document as described in

subsection mapreduce in order to be processed by mappers and reducers.

After these procedures, an authorized data user wants to retrieve from the server some documents

that contain one ore more chosen keywords. To do this, the data user firstly computes the trapdoor for

each keyword, then submits the trapdoors to the cloud server. The server will apply the Test algorithm

embedded into MapReduce model. In the map phase, every trapdoor of keywords will receive the

value 0 (because the search have not started). In the reduce model, every reducer will check if its

InputSplit is compatible with (some of) the trapdoors, by running the Test algorithm of PEKS for each

trapdoor. For every value of 1, the ID of the document is added to a list associated with the trapdoor.

Below, we present the algorithm.

Table 1. The implementation for Map function

Algorithm1. MapReduce model for PEKS

procedure prepare_input

// This procedure prepares the input for MapReduce model.

// It consist in running the algorithms in PEKS, except for Test.

end procedure

function map(𝑒𝑛𝑐𝑘𝑤):

input: a list of trapdoors of keywords 𝑒𝑛𝑐𝑘𝑤

output: a pair of form (𝑘𝑤𝑖, 0)

 for each element 𝑘𝑤𝑖 in 𝑒𝑛𝑐𝑘𝑤:

 set (𝑘𝑤𝑖 , 0)

 end for each

end function

Table 2. The implementation for Reduce function

Algorithm2. MapReduce model for PEKS

function reduce(𝑘𝑤, 𝑑):

input: a trapdoor 𝑡𝑘𝑤 and a document 𝑑

output: a pair of form (𝑘𝑤, 𝑙𝑖𝑠𝑡)

 for each encrypted word 𝑘𝑤𝑖 in 𝑑:

 𝑙𝑖𝑠𝑡 ← []
 if Test(𝑘𝑝, 𝑡𝑘𝑤, Enc(𝑘𝑝, 𝑘𝑤𝑖)) == 1

 then 𝑙𝑖𝑠𝑡.add(𝑑.ID)

 end if

 end for each

return (𝑡𝑘𝑤, 𝑙𝑖𝑠𝑡)

procedure send_output

// This procedure sends the output to user.

// The output represents all documents for which the list is not empty.

end procedure

After the data user receives the encrypted documents, he/she will decrypt them, applying the

decryption algorithm and using the secret key.

4. Conclusions

Cloud computing is a main technology nowadays, but its security issues generate some concerns in

adopting it. A response in this direction is searchable encryption. In this paper we proposed a general

framework based on MapReduce model, which will speed up the search process of a searchable

encryption scheme. This work is under development and practical result will be provided.

References

[1] Song, D. X., Wagner, D., & Perrig, A. Practical techniques for searches on encrypted data. In

Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000 (pp. 44-55). IEEE (2000)

[2] Boneh, D., Di Crescenzo, G., Ostrovsky, R., & Persiano, G. Public key encryption with

keyword search. In International conference on the theory and applications of cryptographic

techniques (pp. 506-522). Springer, Berlin, Heidelberg (2004)

[3] Blass, E. O., Di Pietro, R., Molva, R., & Önen, M. PRISM–privacy-preserving search in

MapReduce. In International Symposium on Privacy Enhancing Technologies Symposium

(pp. 180-200). Springer, Berlin, Heidelberg (2012)

[4] Dinh, T. T. A., Saxena, P., Chang, E. C., Ooi, B. C., & Zhang, C. (2015). M2R: Enabling

stronger privacy in MapReduce computation. In 24th USENIX Security Symposium

(USENIX Security 15) pp. 447--462 (2015)

[5] Zuo, C., Sun, S. F., Liu, J. K., Shao, J., & Pieprzyk, J. Dynamic searchable symmetric

encryption schemes supporting range queries with forward (and backward) security. In

European Symposium on Research in Computer Security (pp. 228-246). Springer, Cham

(2018)

[6] Bakas, A., & Michalas, A. Multi-Client Symmetric Searchable Encryption with Forward

Privacy. Cryptology ePrint Archive (2019)

[7] Zuo, C., Sun, S. F., Liu, J. K., Shao, J., & Pieprzyk, J. Dynamic Searchable Symmetric

Encryption with Forward and Stronger Backward Privacy. In European Symposium on

Research in Computer Security (pp. 283-303). Springer, Cham (2019)

