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Abstract. This study addresses the problem of ship’s course stabilization accuracy 

improvement in order to reduce trip distance and fuel consumption. The method is to upgrade 

autopilot control diagram. Proposed block diagram of a dual-loop control system allows to 

estimate the effects of disturbances and form the positive feedback transfer function. Dual-loop 

course control system Matlab/Simulink model was developed in the paper. Mathematical 

modelling analysis shown the effectiveness of such system in course accuracy improvement by 

compensating of wind-wave disturbances. In addition, proposed system operation modelling 

analysis demonstrated ship’s course keeping system response time improvement with the use 

of estimated disturbance positive feedback loop. 

 

  

1. Introduction 

Ship’s navigation safety and operational characteristics improvement are important tasks of modern 

maritime transport. Such tasks require continuous development of ships’ navigation control systems. One 

of the key components of a ship’s navigation control system is the course control system (autopilot). 

The course control system of a modern marine ship must comply with international requirements 

(IMO Res. A.342 (IX), IMO Res. MSC. 64 (67) Annex 3, IMO Res. A694 (17), IMO Res. A.822 (19) 

and ISO11674 (2006) / 16329 (2003) for High Speed Crafts, IEC 62065 Track Control System).  

According to the requirements the main tasks of the autopilot are: automatic course keeping, course 

changing with set angular velocity or given radius, ship’s track control using Electronic Chart Display and 

Information System (ECDIS).  

Autopilot effective operation leading to reducing ship’s yawing and, as follows, reduces propulsion energy 

loses and fuel consumption. Thus, the development of autopilots and track control systems which provides 

accurate course changing and stabilization in varying weather and load condition is an important task. 

The goal of this research is ship’s course stabilization accuracy improvement by upgrading an autopilot 

configuration in order to take into account wind-wave disturbances. 

 

2. Research findings 

Today most of automated course control systems (ACCS) operation is based on the use of a ship’s 

mathematical model [1–5]. Obviously if ship’s dynamics mathematical model (MM) is more accurate 

then it’s allows to synthesize ACCS more effective and as follows to decrease loses, steering gear load 

and fuel consumption for propulsion.  

At present, ship’s movement control theory allows to use different MM [3, 4] which describes 

adequately ship’s movement physical processes. Usually marine ship mathematical model is based on 

six degrees of freedom rigid body movement mathematical model [2, 4, 5]. International Maritime 

Organization (IMO) had developed and adopted resolution A.751(18), regulating the necessity of 

ship’s dynamics MM use when solving navigational safety practical tasks [6]. Simplified Nomoto-



models [1–3, 6, 7] are recommended by authorities to use in marine autopilots. Second order Nomoto 

model [4, 6–8] can be described by equation:  
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where ω – angular velocity (speed) of the ship; H(ω) = ν1|ω|ω + ν2ω
3 

 – the nonlinear function of the 

angular velocity; Т1, Т2, Т3, К, ν1, ν2 – the parameters of the mathematical model; αr – rudder angle. 

Equation (1) parameters estimation are presented in [9], where is taken into account that 

dψ(t)/dt =K1·ω(t). In this formula are indicated: ψ(t) –course angle; K1 –ship design factor.  

Modern autopilots configuration (NAVPilot xxx Series from Furuno, AP3xxx from Navis Engineering 

OY, PT500D from Yokogawa, NautoPilot 5000, NP2025PLUS from Raytheon, PilotStar D, Saura SA-

10, Navitron, etc.) allows to adjust its operation modes flexibly, taking into account various factors and 

external influence, using various sensors. As example it is shown on Fig. 1 "NAVIPILOT 4000" autopilot 

block diagram. 

 

 
Figure 1. Block diagram of the "NAVIPILOT 4000" autopilot 

 

Most well-known ACCS [1–4, 10–13] use the PID-regulation algorithms and are based on the 

stabilization principle "by deviation". But there is a class of control systems based on the principles of 

dual-loop (combined) control. However, this principle is almost not applied in the ACCS due to the 

difficulty of external disturbances measurement. 

The most sufficient external load (wind, wave) acting on the ship is complex and forms the main 

disturbing effect on the course stabilization system (CSS). Preliminary, in general form, we will 

consider the CSS operation features based on the application of two-loop control principle. 

Let’s assume that main disturbance I(s) at any point of time and its application point to controllable 

parameter Y(s) stabilization system are known. By adding to any stabilization system disturbance 

invariance properties it is possible to improve system’s static and dynamic properties without losing its 

stability [7, 8]. One of the requirements of the invariance theory is the presence of two disturbance 

measurement loops. Thus the main tasks are disturbance measurement, processing and inputting 



(second loop) in stabilization system. But in control systems practical implementation it is impossible 

to achieve absolute invariance. It should be noted that real two loop control systems, as a rule, are 

providing the compensation of just one chosen disturbance.  

Let the perturbation I(s) act on the control object Wo(s) in a closed system (X(s) – is the master signal 

of the system, Y(s) – is the initial coordinate). The system contains elements described by transfer 

functions: Wр(s) – PID-regulator, Wо(s) – control object, Wfb(s) – feedback sensor. In cases where it is 

possible to provide additional loop with disturbance information, turning + I(s) into – I(s) the influence 

of this disturbance can be completely compensated, as follows from the expression: 
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if for (2) the condition I(s)⋅Wо(s) = I(s)⋅Wс(s)⋅Wр(s)⋅Wо(s) is set, then the formal condition for complete 

invariance to I(s) is Wс(s) = 1/Wр(s). 

For the operation of additional loop, it is necessary to provide a disturbance sensor I(s) and physically 

implement the transfer function (ТF) of the compensator Wс(s), which is the reverse ТF to the regulator 

Wс(s) = 1/Wр(s). This will allow us to obtain the value of the disturbance I(s) with a minus sign. 

If the transfer coefficients of the measurement node I(s) and compensation Wс(s) remain unchanged 

over a wide range of amplitudes and frequencies, then the invariance property of the control system 

will exist for almost all amplitudes and frequencies of disturbance I(s). 

However, practical implementation of disturbance compensating input signal, for the real СSS, is quite 

difficult. It is connected with the technical difficulties of wind-wave disturbances direct measurement. 

In this article is proposed a simple method of adding the wind-wave disturbances partial invariance 

to the ACCS, based on the indirect determination of the basic disturbance Ic(s), which causes ship’s 

course deviation. Indirect measurement of the main disturbance is based on the principle shown on 

Fig. 2 – the desired disturbance Ic will be determined basing on measurements of the signals X1 and Y1, 

i.e. Ic = X1⋅W1(s) - Y1/W2(s). 

 
Figure 2. The principle of indirect disturbance measurement 

 

As indicated above, to implement a two-loop control system, it is necessary to know the disturbance 

application point. It is assumed that the main disturbance Ic(s) can be matched to the rudder angle what is 

acceptable from automation theory point of view. Dual-loop CSS functional diagram is presented on Fig. 3. 

 

 
Figure 3. The functional diagram of a dual-loop CSS providing partial invariance to Iс(t) 



In Fig. 3 marked: RС – ship’s course ψ regulator; KM – steering gear control closed loop; MS –

Nomoto second order model transfer function; DFS – feedback sensor (course angle) Mod. 1, Mod. 2, 

Compensation – accordingly, the device for measuring and inputting a compensating disturbance 

positive feedback in the CSS. 

The main disturbance can be estimated by expression, which follows from the diagram shown in Fig. 2:  
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≈ , and where Ws(s) is the transfer function of 

the ship’s model. 

Obviously, the digital or analog implementation of expression (3) requires the calculation of derivatives 

with all known technical problems and limitations. Note that rudder angle and course angle ψ real 

measurement devices have filtering properties and often can be described by aperiodic link with the time 

constants Tс and Tт, respectively. Let’s  install a filter with a transfer coefficient and a time constant at the 

output of the steering angle sensor, exactly the same as that of a course angle sensor, and a filter with a 

transfer ratio and time constant, like that of a steering angle sensor at the output of the course angle sensor. 

This simplifies the technical implementation of the system by obtaining a common denominator in the 

transfer functions. Taking into account the above, the structural diagram part, which allows to estimate the 

main disturbance Ic(s), is shown in Fig. 4. 

It should be noted that the estimated value of the main disturbance will always have a dynamic error, 

which in the best case is determined by the inertia of the second-order aperiodic link 1/((Tс ⋅Tт)⋅s2
 + 

(Tс+Tт)⋅s +1). 

The disturbance, which is estimated with the use of the structural diagram shown in Fig. 4, is 

determined by the expression: 
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The expression (4) includes the component 1/Ws(s), according to (3). 

 

 
Figure 4. The section of the structural diagram (see Fig. 2), providing estimation of the main 

disturbance 



It's obvious that: 

- the )s(I
^

c
 estimation resulting accuracy depends on the accuracy of the technical implementation 

of the expression 1/Ws(s); 

- in a system with a course angle sensor and an observation, the estimation will be rough, since the 

inertia of such a measuring channel is quite high and comparable with the inertia of the steering gear; 

- the compensating link transfer function )s(W)s(W ic
1−=  cannot be precisely implemented, since 
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which, in turn, is also simplified based on an approximate mathematical model of the ship’s steering gear. 

A ship’s mathematical model based on expression (1) can be presented in MatLab/Simulink 

application (Fig. 5). This model includes non-linearity 3
21 ων+ωων=ω ||)(H  with the use of 

blocks: Product, Gain 2, Gain 5, Gain 6, Add and Abs. 

 

 
Figure 5. The implementation of the expression (1) in MatLab/Simulink (Subsystem i Subsystem 4, 

shown in Fig. 6) 

 

Fig. 3 system modeling, was carried out using the scheme created in MatLab/Simulink (see Fig. 6), 

using the methodology described in [17–20]. The main disturbance was modeled as a periodic sum of 

two harmonic effects (SineWave) of different amplitude, frequency and phase shift. 

For simulation was used the icebreaker vessel model with the length of the vessel at the design 

waterline Lwl = 70,5 m, volumetric displacement W = 2864 m
3
, the total power of the SPP N = 4600 

kW, with the ship speed interval V = 2 ... 20 kn. The parameters of model (2) are based on the results 

of identification [6, 7, 9, 16] (see Table 1.) 

 

Table 1. Identified parameters 

 К ν1 ν2 Т1 Т2 Т3 

0,031 -1,7·10
-3

 -6,1·10
-4

 31 15 5 



 
Figure 6. Ship's ACCS model with the implementation of the principle of two-loop control based on 

the indirect determination of the main disturbance 

 

The steering gear dynamics is described by the aperiodic TF with time constant Ti = 3,5 s. 

Fig. 7 shows the resulting disturbance (graph 1). This disturbance causes a significant change in the 

ship’s course. Autopilot is compensating this disturbance using the PID controller. The parameters of 

the PID controller are selected using the synthesis of a closed system and are almost optimal for 

chosen conditions.  

Analyzing the simulation results, can be concluded that the stabilization of the course angle ψ at a 

given CSS value of –5° with a deviation of ± 2° (graph 2) with the conventional system with a PID 

controller is not sufficient.  

 

 
Figure 7. Results of system modeling (see Fig. 2 and Fig. 3), taking into account the effect of the main 

disturbance compensation  
 

Using the proposed estimation Ic(t) and adding the additional compensation loop for the resulting 

disturbance (see Fig. 3 and Fig. 4), the dynamics of the system, even without changing the autopilot  

PID controller setting, was significantly improved. This is illustrated in graph 3 shown in Fig. 7, which 



shows the estimated value of Ic(t) (almost coincides with graph 1). Graph 4 – shows the change in the 

course angle in the proposed course stabilization system, which is partially invariant to disturbances. 

 

3. Conclusions 

Dual-loop ship’s course control system simulation analysis shows that offered approach to the course 

stabilization accuracy is effective and allows sufficiently improve quality of course control. As can be 

seen from simulation results, resulting disturbance compensation, using the classical stabilization 

system "on deviation" and PID autopilot controller, the maximum dynamic course deviation is ± 2°. 

Under similar weather conditions, but using the proposed dual-loop system, which is partially 

invariant to disturbances, we obtain a maximum dynamic deviation close to 0,35°. 

In addition, proposed system operation modelling analysis demonstrated ship’s course keeping 

system response time improvement with the use of estimated disturbance positive feedback loop. This 

improvement will lead to fuel consumption reduction and saving of steering gear service life. Of 

course, the proposed system requires further experimental studies. 
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