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Abstract. The choice of pseudo random number generators is a major problem in many areas 

of activity, one of the areas that uses them intensively it is the field of cryptography. 

Although they are applicable to any programming  paradigm, these generators can be used 

successfully in the statistical analysis of thermodynamic behaviors, so, they must be designed  

individually to meet the requirements of each type of client. The research for new pseudo-

random number generators with  higher level of security is a field in great expansion, but the 

factors that influence us to use a product are  not always this high level of security, but features 

such as ease of implementation or rapidity of generation. The design of a pseudo-random 

number generator needs to consider various characteristics simultaneously, which can be 

regarded as a optimization problem. The purpose of the article is to give a overview of the 

characteristics that a pseudo-random generator must meet in different fields, to define an 

objective function that encompasses these features, and create a mathematical optimization 

problem in order to achieve the maximum of properties that a pseudo-random number 

generator can give.  
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1. Introduction 

Randomness is one of the fundamental computational resources and appears everywhere. 

In general, we cannot talk of a single random number other than in a statistical context. The correct 

term is that of random numbers. Using the computer, reduces the term of random numbers to a 

sequence of randomly generated bites, grouped by a certain rule. Mathematically, there is no shorter 

way to specify the string than the sequence itself. 

A random number generation is done by collecting and processing data obtained from a source 

of entropy outside the computer. The source of entropy can be very simple, such as variations of 
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mouse movements, or the time interval between pressing two keys. Very good sources of entropy can 

be radioactive sources or the ones using noise from the atmosphere. 

The property of being random was introduced into computers with the help of generators of 

pseudo-random numbers (PRNG). There are many ways to define pseudo-random number generators. 

The usual form to define a PRNG is by a deterministic recurrent sequence in a finite field or ring, with 

an output function which is mapping each state to an input value. This value is often either a real 

number in the interval (0, 1) or an integer in some finite range [1]. 

Random numbers are applied in several sciences such as simulation modeling, computer 

sciences, statistical sampling and, not least, cryptography. For this reason, finding a method of 

choosing that certain PRNG that meets all the specific qualities of that domain is a impetuous 

necessary task. 

Most optimization problems that occur in practice have a multi-criteria character because they 

need to be simultaneously optimized for several criteria. Multi-criteria optimization problems play an 

important role in engineering, management and many other areas. These criteria that must need to be 

optimized, in most cases, can be in conflict. For example, at the same time some of the criteria need to 

be maximized and others minimized. Finding solutions to compromise on a rational basis has been a 

challenge for researchers over time. 

In this study, we are trying to present a large part of the classification criteria and the 

characteristics that a PRNG needs to have in various areas. After identifying the main features and 

identifying the importance of each, we build a multi-criteria optimization problem in which the 

objective function is defined in relation to these properties and their weights. 

By creating this optimization problem, a selection model is available from the existing PRNGs on the 

market to that generator that exactly meets the requirements of a particular customer. Moreover, can 

provide a model for the design and realization of certain types of generators. 

The structure of the article is the following. Section 2 analyzes the need for pseudo-random 

number generation and selected qualities that a PRNG needs to meet in different areas. In Section 3, 

starting from these features that a PRNG has to accomplish, we have built up a multi-criteria 

optimization problem and we have developed a method of determining the weights that the objective 

functions must have in order to transform the multi-object optimization problem, in a single-object 

optimization problem. 

 

2. PRNGs in different sciences 

Probability theory and mathematical statistics are grounded around the abstract concept of 

random variable. 

Although both mathematical domains provide us powerful tools to analyze the properties of random 

variables, their implementation in computing systems seems unrealistic because of the finite 

representation of numerical values. Computationally, the purely arbitrary behavior of real-world 

stochastic processes is simulated using deterministic algorithms, referred to in the literature as 

pseudorandom number generators.  

Pseudorandom number generators are applicable in different areas such as Monte Carlo 

applications, simulation methods, statistical applications and cryptographic applications (session key 

generation, authentication protocols, digital signatures, etc.). 

 

a. Thermodynamic systems as a reference model for PRNGs 

 

The quality in terms of the randomness level of PRNGs needs to be compared to the level of 

randomization obtained in the case of random sequence generators. A source of random number 

sequences is represented by natural phenomena. A category of phenomena that can be analyzed for 

this purpose is the one based on the study of thermodynamic systems, especially those in the state of 

gas aggregation. The analysis of the behavior of the gas molecules regarding the spatial reference 



system of the enclosure in which the gas it is located, can be a source of experiments from which 

random number sequences can be generated. The level of randomization in this case can certainly be 

appreciated as a level of refinement, randomization in this case being pure, natural. In assessing the 

quality of randomness of PRNGs, it is absolutely necessary that the reference system is certified, so 

that the evaluation is coherent and correct. 

 

b. PRNGs in simulation modeling 

 

In simulation modeling, one of the following situations might occur: 

-The system that must be studied is too expensive to create in real life. 

- It is not possible to conduct experiments directly on the system. 

- A chance plays a part in the data. 

- The system that we need to test does not exist yet. 

 

In all these cases, a model can be simulated and tested for the impact of data change on system 

behavior. To run a simulation algorithm, it is necessary to use a random number generator. 

Using a deterministic algorithm, the computer does not really generate a random number but a 

list of pseudo-random numbers. 

 Numerous generators of pseudo-random numbers have been created over time, but we cannot 

say about one of them, that it is the best. 

 Most programming languages have built-in random number generators, such as the command 

rand (1) that generates random numbers between 0 and 1, in MathLab. Also, the function round(x) 

returns 0 of 1 2x    and returns 1 if 1 2x  . 

Another probability distribution commonly used is the normal distribution. To get values of the 

normal distribution with a mean of    and standard deviation of 
2 , is usually used: 

1 2( 2ln( (1))) cos(2 (1))rand rand    . 

By far, the most used method of simulation is the Monte Carlo method. In this method are used 

a large number of random numbers to generate a model. By this method even the most complex 

systems can be described, but this, also takes a lot of time and memory consumption.  

In practice, the objectives for simulation model very often may include the following: 

1. Collecting statistics on the long-term behavior of the system. 

2. Comparing alternative arrangements of the system, investigating the effects of changing the 

parameters or the modeling assumptions. 

3. Finding the optimal operating conditions for the system. 

4. Monitoring how the initial conditions influence the running time. Sometimes certain choices 

of random numbers can create the 'artificial state' of the system which might halt the 

calculations before the system transitions into a 'busy state'. 

Therefore, we can conclude that, as a pseudo-random number generator to be good in 

simulation modeling it must meet the following requirements: 

- low memory consumption; 

- high speed; 

- high degree of randomness. 

 

c. PRNGs in statistical sampling 

Pseudo-random number generators (PRNGs) are central to the practice of Statistics. They are 

used to draw random samples, allocate patients to treatments, perform the bootstrap, calibrate 



permutation tests, perform MCMC, approximate p-values, partition data into training and test sets, and 

countless other purposes. 

To make a simple random sampling must drawing k objects from a group of n in such a way 

that all  
n

k

 
 
 

 possible subsets are equally likely. In real life truly random sample are difficult to 

obtain. 

For this reason in statistical sampling there are used:  

1. Pseudorandom number generators (PRNGs) because these produce sequences of bits, and 

2. Sampling algorithms. This algorithms map a sequence of pseudorandom numbers into a 

subset, and that set is the set of population. 

Most of the researchers in the field state that the simple sampling conditions are met through 

this procedure. However, there are some situations where PRNGs must generate the majority of 

possible cases, such as games of chance and lottery tickets. In such cases it is desirable to use it the 

multiple-seed PRNGs [2]. If, using the PRNG there are not generated all possible situations, then for 

that problem certainly there cannot be applied methods such: bootstrap samples, permutation, Monte 

Carlo integration. Selecting a simple sample is not that simple just for the reason that some are trying 

to cheat. Furthermore, randomness is not the only selection criteria for the sample. Recent works are 

encouraging the use of dices in choosing of the samples and discouraging the use of computers. In [3], 

for example, it is proposed not to use PRNGs at all, including CSPRNGs in the audit process. With all 

this skepticism, in [4] it is demonstrated that proper use of CSPRNGs would enhance audit security. 

So, we conclude that, in statistical sampling, a PRNG must satisfy the following conditions: 

- high degree of randomness; 

- low memory consumption; 

- long period; 

- high speed. 

d. PRNGs in cryptography 

 

By far, cryptography has the most need of pseudo-random numbers. Cryptography requires 

numbers that attackers can’t guess. For this reason, most generators have been built for cryptographic 

purposes and many have analyzed their qualities from various points of view [5, 6]. 

In cryptography, randomness plays has a key role in multiple applications, like key generation, 

initialization vectors generation, hiding or masking values. For this reason, security of the cryptographic 

systems is based on the use of sources that generate evenly distributed bits and with perfect randomness. 

The main security requirements of an CSPRNG are that they must pass all statistical 

randomness tests, and that they should resist serious attacks, even in the case that the attacker has 

access to their initial or running state. 

Using a PRNG in cryptographic applications requires that the generated values have a random 

and unpredictable character. The randomness of the generated values is conditional upon obtaining, at 

its output, strings of arbitrary length numbers that do not contain repetitions. Since a PRNG uses a 

fixed amount of memory, after a certain number of iterations, it will return to a previous state, at 

which point the states will repeat in the same order in an infinite cycle. Therefore, generators of 

https://www.howtogeek.com/howto/33949/htg-explains-what-is-encryption-and-how-does-it-work/


aperiodic pseudo-aliquot numbers cannot be built, but their successful use in cryptographic 

applications implies that the rehearsal period should be as high as possible [7]. 

The unpredictability of the generated values is the computational impossibility to determine, 

based on the current state, either a previous state or a subsequent state. Since a PRNG is mainly used 

to generate secret keys, the degree of unpredictability of a generator indicates the degree of security of 

a cryptosystem. If a possible attacker determines correlations between the generated numbers, then the 

security of the cryptosystem can be compromised. In fact, a quite important part of cryptanalysis is 

based on the exploitation of the low degree of unpredictability of the generated values. 

      Besides the statistical properties, a good cryptographic PRNG must have high generation speed 

and high resistance against attacks.  If the generator is used in session key generation, speed does not 

play a fundamental role, a longer period is preferable in this case, but in application like simulations, 

stream ciphers, speed is compulsory condition.  

On the other hand, robustness against attacks it is a requirement that all cryptographic PRNGs must 

meet. A famous example of a random number generator that is not robust from cryptographic point of 

view is the PRNG used in SSL (Secure Socket Layer) protocol.  This generator is weak primarily 

because of the inappropriate choice of random sources (current time or process ID). A 128-bit session 

key produced by this generator only contained at most 47 bits of entropy and, thus, could be broken 

within minutes [8]. Speed and robustness are often contradictory qualities. For example, LFSRs, 

which are easy to implement in hardware and software, and which can therefore be used in 

applications requiring a rapid generation of random number sequences, are not cryptographically 

secure.  In this case, an adversary can determine the seed of a generator only by observing 2n 

consecutive output bits [9]. There are, of course, generators that have a high degree of cryptographic 

security but which are slower. However, there exist exceptions like AES, which combines speed with 

high robustness against attacks. 

 

We conclude that the main features that a CSPRNG must have are: 

- high degree of randomness; 

- long period; 

- low memory consumption; 

- high speed; 

- high robustness. 

 

Of course, the above areas are not the only ones that require PRNGs. The generation of pseudo-

random numbers is an important and common task in computer programming. An area in which systems 

capable of generating random numbers are successfully used is that of the casinos. Nowadays, whether it's 

classic or virtual mechanical devices, random number generation systems are found in all of these, being 

essential for such games.  Another area that uses such a system is that of the lottery. Random numbers 

generators are used in this area to establish winning numbers without involving any kind of human 

intervention, resulting in greater unpredictability. 

Certain graphic artists or designers use this type of system to generate completely randomized images. 

With the help of specialized drawing and graphics applications, they can create impressive 

compositions that at first glance seem to be inconsistent with any rule. Often the systems involved can 

be extensively configured using dots, lines, regular or irregular geometric shapes, or any combination 

of them. Weaker forms of randomness are used in hash algorithms and in 

creating amortized searching and sorting algorithms [10, 11]. 

As a general conclusion, we can say that the main criteria for selecting PRNGs are as follows: 

large period, randomness, high generating speed, easy hardware or software implementation, and low 

memory consumption. 
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3. Building the optimization problem 

 

Like any multi-criteria optimization problem, the problem formulation actually involves 

constructing the objective function. This function involves the characteristics that must be optimized. 

In the previous section we have identified the criteria for selecting a particular PRNG from a list of 

PRNGs. Let's note these five criteria with 1 2 3 4 5, , ,   x x x x and x . 

Criteria may be contradictory. For example, if the period, randomness and generation speed are 

maximized, implementation costs and memory consumption should be minimized (in our case, must to 

be minimize criterion  4x  and 5x  ). For this reason, there is no single solution to optimize them all. 

We say that there are several Pareto optimal solutions and we need to find that solution called Pareto 

Optimal or Pareto Efficient, for which none of the objective functions is improved at the expense of 

another[12]. Multi-criteria optimization problems are studied from different points of view, therefore, 

there are different goals and solutions in solving and setting them. In some of these studies it is even 

introduced a set of pseudo-operators with the purpose of eliminating some of drawbacks which appear 

in mathematical optimization, like the lack of differentiability and convexity of the objective function 

[13,14].    

To solve these types of problems there are various methods of finding the optimal solution, from the 

aggregation method or the displacements to a target value to evolutionary algorithms. 

 

Problem formulation: 

We consider the optimization problem 

              max      ( )f x   

where 1 2 3 4 5( , , , , )x x x x x x  is the set of characteristics of all available PRNGs, 
5:f   . 

The objective function is build such as: 
3 5 5

11 4

( ) ,  (0,1),  1i
i i i i

ii i i

w
f x w x w w

x  

     . 

To determine the parameters ,  1,...,5iw i   we propose the following procedure: 

 

1. Depending on the number of domains in which the PRNG is going to be used, a relevant 

number of experts can be selected, whose opinion is conclusive in the PRNG quality analysis 

study, without the aim of a statistical analysis, the number of domains of interest being finite. 

In this paper we propose an analysis model based on the selection of seven experts, although 

there can be more or fewer. Let's note the seven experts with ,  with 1,...,7iE i   . 

2. Queries of the experts on the weight that each criterion ,  with 1,...,5if i  should have. 

Let's note these weights with ,  with 1,...,5 and 1,...,7ijp i j  . We specify that these values 

ijp  are subunit values with 

7

1

1ij

j

p


  and with i = 1, ..., 5. 

3.  Of the values ,  with 1,...,5ijp i   the lowest and highest value are removed, with the 

purpose of obtaining an average value by dropping extreme values. Consider that the remaining 

values are ,  cu 1,...,5 and 1,...,5ijp i j  . 

4. Add the remaining weights. We get the following values: 
5 5 5 5 5

1 1 2 2 3 3 4 4 5 5

1 1 1 1 1

,  ,  ,  ,  i i i i i

i i i i i

v p v p v p v p v p
    

         . 



5.  We sum up the five values   1,...,5iv i   and we divide every value iv  at  
5

1

i

i

v


 . Thus 

obtaining the values
5

1

i
i

i

i

v
w

v





 . These values have to be the necessary parameters in our 

optimization problem. 

 

 

Conclusion:  

In this article we have developed a multi-criteria evaluation procedure of pseudo-number 

generators to weigh them in relation to others and a method of determining the weight of each 

criterion. The selection of the experts is extremely important. We suggest choosing them from various 

fields of activity which involve the use of these generators, for example, from industry, research, 

education, commerce or users area. By this method, there can be analyzed any kind of technical device 

that needs to be weighed according to several parameters. 

 We did not intend to evaluate a particular case, this being a matter of detail that requires 

knowledge of each field. A complete analysis of a set of generators using the proposed methodology 

may be the subject of a future article. 

As well as future research directions, we try to find ways to optimize the characteristics of 

pseudo-random number generators by classifying them according to their genre. Classifying it in: 

arithmetic generators, algebraic generators, hardware generators, generators obtained from simulations 

of various physical phenomena, we can get the optimum from its genre. 

The domain of thermodynamics might have a hard word to say in terms of generating purely 

random numbers. It is well known that in the case of thermodynamic processes such as the combustion 

process, a relationship must always be fulfilled: .V P Temp ct    When one of these parameters 

varies, the internal energy inside the gas container changes. By modifying internal energy, the 

behavior of gas molecules becomes chaotic. In this way, by studying the behavior of one or more gas 

molecules, at variations of temperature or pressure, or both, we could generate purely random 

numbers. These numbers could be given, for example, by the distance from the molecule to the 

container walls at different and discreet moments of time. 
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