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Abstract. Designing is an act of creation, which is a technical activity carried out for productive 

purpose, and which aims to provide all the data necessary for the implementation of correlated 
material and financial means, a theme or an idea in practice. 

Depending on the operating conditions of the machines and their technological destination, 

optimum reliability, maintainability and ergonomics must be ensured from the design stage. 

For some areas where toothed gears are used, such as the aerospace industry, the automotive 

construction  etc., reduced gear mass (volume) can be an important parameter to become an 

optimization criterion. 

This paper aims to study the gearing mass and proposes to minimize this function. 

 

𝑀𝑔𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑉𝑔𝑒𝑎𝑟𝑖𝑛𝑔 ∙ 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 → 𝑚𝑖𝑛 

1.  Introduction 
The gear mechanism is made up of two gears, which are sequentially transmitted through the teeth and 

continuously contacting (engaging) - rotating movement and torque between the two shafts. 

Gears are used to transmit the rotation movement from the drive shaft to the other driven, achieving 
a constant transmission ratio between speeds. Transmission of movement is always accompanied by the 

transmission of torque, which is a mechanical work, so a power. 

A gear is made up of a pair of gears, one driving and the other driven. Relative sliding of the surfaces 
in contact is excluded because the movement is not transmitted by the frictional force but by a pushing 

force between the teeth. 

Gears have a wide use in mechanical transmissions, due to their advantages: constant transmission 

ratio; safety in operation; high durability; high efficiency; reduced size; the possibility of using for a 
wide range of powers, speeds and transmission reports. As drawbacks, there can be mentioned: high 

execution and mounting precision; complicated technology; noise and vibration in operation. 

In the modern construction of machines and appliances, gearing is the most important and most used 
mechanism. The construction of a car like that of a lathe contains dozens of gears. 

Properly groomed and properly assembled can guarantee safe operation at speeds and reduced power 

up to thousands of kilowatts of power and at high speeds up to 100-150 m / s. At present, toothed wheels 

with dimensions between fractions of millimeters up to 10 m in diameter can be built. 
When selecting the material, a number of factors must be taken into account: the load that loads the 

gear; the required service life; the mechanical characteristics of the materials; how to obtain the semi-

finished product; execution technology; economic efficiency; operating conditions. 
 

 



 

 
 

 

 

 

2.  The optimisation problem 

This paper is a study on the mass of a gear speed reducer single stage and the objective function is to 

minimize this value. 

 
 

 
Figure 1 - Speed reducer single stage 

 

 

                   
Figure 2 – Kinematic scheme of the reducer 

 

 
It is proposed to design a cylindrical gear with inclined teeth having the following input data: 

 

 Power of the second shaft: 𝑃2 = 24 𝑘𝑊 

 Total gear ratio: 𝑖𝑅 = 2 

 Speed of the second shaft: 𝑛2 = 1000 𝑟𝑜𝑡/𝑚𝑖𝑛 

 The mean time in service between two successive repairs: 𝐿ℎ = 9000 ℎ𝑜𝑢𝑟𝑠 

 Number of wheels in contact with the wheel gear: 𝜒1,2 = 1 

 Difference in wheel width: Δ𝑏 = 5 𝑚𝑚 

 Toothed wheel materials:  

 Pinion: 41MoCr11 - improved steel: 𝐻𝐵1 = 2800 𝑀𝑃𝑎 

 Gear: 40Cr10 – improved steel: 𝐻𝐵2 = 2500 𝑀𝑃𝑎 

 Density materials: 𝜌𝑚𝑎𝑥 = 7,85 ∙ 10−6 𝑘𝑔/𝑚𝑚3 



 

 
 

 

 

 

 Tensions limit for material gears: 

- 𝜎𝐻 lim 1 = 720 𝑀𝑃𝑎 

- 𝜎𝐻 lim 2 = 675 𝑀𝑃𝑎 

- 𝜎𝐹 lim 1 = 460 𝑀𝑃𝑎 

- 𝜎𝐹 lim 2 = 445 𝑀𝑃𝑎 

 Safety factor for contact stress: 

- 𝑆𝐻 = 1,25 

- 𝑆𝐹 = 1,5 

 Flank hardness factor: 𝑍𝑤 = 1 

 Elasticity factor of the wheel material: 𝑍𝐸 = 189,8 𝑀𝑃𝑎1/2 

 Material factor: 𝑍𝑀 = 271 𝑁/𝑚𝑚2 

 Precision class (tolerance grade): 7 toothing milling with the snail cutter and grinding 

 Rack reference: ISO 53; 

 Profile of generating rack: 

 Pressure angle normal reference plane: 𝛼𝑛=20° 

 Tooth head height factor: ℎ0𝑎
∗ = 1 

 Match factor at the head of the reference tooth: 𝑐∗ = 0,25 

 Factor of operating mode: 𝐾𝐴 = 1 

 Lubricant type: TIN 125 EP with kinematic viscosity 125÷140 𝑚𝑚2/𝑠 at 50°𝐶 

 Overloading coefficient 𝑐𝑠 = 1 

3.  Optimisation problem genes 
In the broad sense, optimization means the action of determining, on the basis of a predetermined 

criterion, the best decision in a given situation where more than one decision is possible, as well as the 
action to implement the established decision as well as its outcome.  

Narrow optimization simply means action establishing the right choice (solution) called Decision 

optimal (optimal solution). 

Five variables are considered to optimize the problem. 

 Variable 1 - 𝒂𝒘 – the center distance, axial distance values are those standardized in the field 

40÷315 mm 

 Variable 2 - 𝝍𝒂 – the coefficient ratio between the width and the axial distance (variable real 
continuous), taking values in the range of 0,1 ÷0,6 

 Variable 3 - 𝜷 – the inclination helix angle on the pitch cylinder (variable real continuous), with 

value in the field 7,25° ÷ 15° 

 Variable 4 - 𝒛𝟏 – the number of pinion teeth (full variable),with values in range 24 ÷ 50 

 Variable 5 - 𝒙𝒔 – the profile displacement coefficient sum for both gears (real continuos 

variable), having values in the range -0,5 ÷ +1,1 

4.  Calculate the amount necessary for describing the problem of optimization 

Taking into account the inputs and variables mentioned above, it is necessary to go through a series of 

steps to determine the essential dimensions for describing the objective function and the optimization 
problem constraints. 

4.1.  Determining the power of the electric motor 

𝑃𝑐 =
𝑃2

𝜂𝑡𝑜𝑡
=

24

0,949
= 25,29 𝑘𝑊 

 

𝜂𝑡𝑜𝑡 = 𝜂12 ∙ 𝜂𝑏
2 ∙ 𝜂𝑙 = 0,97 ∙ 0,9942 ∙ 0,99 = 0,949 

 



 

 
 

 

 

 

Where: 

𝜂𝑡𝑜𝑡  – total efficiency of the drive mechanism 

𝜂12 = 0,97 - efficiency of the gears 

𝜂𝑏 = 0,994 - a pair of bearings efficiency:  

𝜂𝑙 = 0,99 - the lubrification efficiency:  

4.2.  Choosing electric motor 

From STAS we choose the EM type 225M-60-6 with : 

 The nominal power: 𝑃𝐸𝑀 = 30𝑘𝑊 > 25,29𝑘𝑊  

 The loaded speed: 𝑛1 = 2870𝑟𝑜𝑡/𝑚𝑖𝑛 > 𝑛12 = 𝑛2 ∙ 𝑖𝑅 = 1000 ∙ 2 = 2000 𝑟𝑜𝑡/𝑚𝑖𝑛 

4.3.  Determination of the torque moments of the shafts 

The moments developed for the two shafts of the reducer are: 
 

𝑀𝑡1 =
30 ∙ 𝑃1

𝜋 ∙ 𝑛1
∙ 106 = 99821𝑁𝑚𝑚 

𝑀𝑡2 =
30 ∙ 𝑃2

𝜋 ∙ 𝑛2
∙ 106 = 229299𝑁𝑚𝑚 

4.4.  Calculating the normal module, the distance between the axes and the number of teeth 

 The distance between axes 𝒂 

𝑎 ≥ (1 + 𝑢)√
𝐾𝐴 ∙ 𝐾𝑉 ∙ 𝐾𝐻𝛽 ∙ 𝑀𝑡2

2 ∙ 𝑢 ∙ 𝜓𝑎
∙ (

𝑍𝑀 ∙ 𝑍𝐻 ∙ 𝑍𝜀
𝜎𝐻 𝑙𝑖𝑚

𝑆𝐻
∙ 𝐾𝐻𝑁 ∙ 𝑍𝑅 ∙ 𝑍𝑊

)

2
3

= 122,761 𝑚𝑚 

Where: 

𝑢 = 𝑖𝑅 = 2 
The center distance is standardizedand is given in table 1 and we’ll choose the next superior value 

but whether the calculated value is les than 5% than the lower one, we may choose the lower one. 

 

Table 1 – Standard center distances [mm] 
 

I II I II I II I II I II I II 

40 40 

45 

63 63 

71 

100 100 

112 

160 160 

180 

250 250 

280 

400 400 

450 

50 50 

56 

80 80 

90 

125 125 

140 

200 200 

225 

315 315 

355 

500 500 

560 

 
 Table 1 shows the standard values for axle spacing between cylindrical and worm gears. The 

values of the I string are preferential. 

 

We’ll take 𝑎𝑤 = 125 𝑚𝑚 

 

 The normal module 𝒎𝒏 

𝑚𝑛 ≥
𝑀𝑡2 ∙ (1 + 𝑢) ∙ 𝐾𝐴 ∙ 𝐾𝑉 ∙ 𝐾𝛼 ∙ 𝐾𝐹𝛽 ∙ 𝑌𝐹 ∙ 𝑌𝛽

Ψ𝑎 ∙ 𝑎2 𝜎𝐹 𝑙𝑖𝑚

𝑆𝐹
∙ 𝐾𝐹𝑁 ∙ 𝑌𝑍 ∙ 𝑌𝐹𝑥

= 0,927 𝑚𝑚 

If the value is under 1 mm then 𝑚𝑛 is selected 1 mm. Thus 𝑚𝑛 = 1 𝑚𝑚 

 

 

 



 

 
 

 

 

 

 Establishing the number of teeth for the driving gear 

The maximum number of teeth is calculated taking into account the center distance and the normal 

module 

𝑧1 𝑚𝑎𝑥 =
2 ∙ 𝑎𝑤 ∙ 𝑐𝑜𝑠𝛽

𝑚𝑛 ∙ (1 + 𝑢)
=

2 ∙ 125 ∙ cos (15°)

1 ∙ (1 + 2)
= 80,49 𝑚𝑚 

 

𝑧1 < 𝑧1 𝑚𝑎𝑥 => 𝑧1 = 30 ÷ 35 if 𝑧1 𝑚𝑎𝑥 = 45 ÷ 80 and more 

 

We’ll choose 𝑧1 = 35 

4.5.  The final selection of the normal module, the distance between the axes and the number of teeth 

  

𝑚𝑛 =
2 ∙ 𝑎𝑤 ∙ 𝑐𝑜𝑠𝛽

𝑧1 ∙ (1 + 𝑢)
=

2 ∙ 125 ∙ cos (15°)

35 ∙ (1 + 2)
= 2,30 𝑚𝑚 

The new module now is 𝑚𝑛 = 2,25 

With this new value one may recalculate the number of teeth: 

𝑧1 =
2 ∙ 𝑎𝑤 ∙ 𝑐𝑜𝑠𝛽

𝑚𝑛 ∙ (1 + 𝑢)
=

2 ∙ 125 ∙ cos (15°)

2,25 ∙ (1 + 2)
= 35,77 

The new selected number is identical with the preliminary selected one 𝑧1 = 35 

With 𝑧1 final we may calculate the number of teeth for the driven gear 

𝑧2 = 𝑢 ∙ 𝑧1 = 2 ∙ 35 = 70 

The rational for selection of 𝑧2 is recommended that the number of teeth of both gears not to divide 

exactly (relative prime number). 

We’ll choose 𝑧2 = 71 
 

The reference center distance is recalculated 

 

𝑎0 =
𝑚𝑛 ∙ (𝑧1 + 𝑧2)

2 ∙ 𝑐𝑜𝑠𝛽
=

2,25 ∙ (35 + 71)

2 ∙ cos (15°)
= 123,46 𝑚𝑚 

4.6.  Geometrical elements calculation 

► The frontal pitch pressure angle 𝜶𝒕 

 

𝛼𝑡 = 𝑎𝑟𝑐𝑡𝑔 (
𝑡𝑔𝛼𝑛

𝑐𝑜𝑠𝛽
) = 𝑎𝑟𝑐𝑡𝑔 (

𝑡𝑔(20°)

cos (15°)
) = 20,65° 

 

► The pitch gearing normal angle 𝒂𝒘𝒕 

 

𝛼𝑤𝑡 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑎0 ∙ 𝑐𝑜𝑠𝛼𝑡

𝑎𝑤
) = 22,45° 

 

 
 

► The profile displacement coefficient sum for both gears 𝒙𝒔 

 

𝑥𝑠 = 𝑥1 + 𝑥2 = (𝑧1 + 𝑧2) ∙
𝑖𝑛𝑣(𝛼𝑤𝑡) − 𝑖𝑛𝑣(𝛼𝑡)

2 ∙ 𝑡𝑔(𝛼𝑛)
= 0,6931 

 
 

 



 

 
 

 

 

 

Where: 

𝑖𝑛𝑣(𝛼𝑤𝑡) = 𝑡𝑔(𝛼𝑤𝑡) −
𝜋

180
∙ 𝛼𝑤𝑡 = 0,0212 

𝑖𝑛𝑣(𝛼𝑡) = 𝑡𝑔(𝛼𝑡) −
𝜋

180
∙ 𝛼𝑡 = 0,0164 

 

 
In order to distribute this sum on both gears we’ll use the chart (Figure 3). 

 

 
Figure 3 – Profile displacement distribution 

 

From the chart we have 𝑥1 = 0,4 so that 𝑥2 = 0,293 

 

► Pitch diameter 𝒅𝟏;  𝒅𝟐 

𝑑1 =
𝑚𝑛 ∙ 𝑧1

𝑐𝑜𝑠𝛽
= 81,515 𝑚𝑚 

 

𝑑2 =
𝑚𝑛 ∙ 𝑧2

𝑐𝑜𝑠𝛽
= 165,359 𝑚𝑚 

 

► Top land diameter 𝒅𝒂𝟏; 𝒅𝒂𝟐 

𝑑𝑎1 = 𝑑1 + 2 ∙ ℎ𝑎1 = 87,815 𝑚𝑚 

𝑑𝑎2 = 𝑑2 + 2 ∙ ℎ𝑎2 = 171,177 𝑚𝑚 
Where addendum is: 

ℎ𝑎1 = 𝑚𝑛 ∙ (ℎ0𝑎
∗ + 𝑥1) = 3,15 𝑚𝑚 

ℎ𝑎2 = 𝑚𝑛 ∙ (ℎ0𝑎
∗ + 𝑥2) = 2,909 𝑚𝑚 

ℎ0𝑎
∗ = 1 

 

► Root diameter 𝒅𝒇𝟏; 𝒅𝒇𝟐 

𝑑𝑓1 = 𝑑1 − 2 ∙ ℎ𝑓1 = 77,695 𝑚𝑚 

𝑑𝑓2 = 𝑑2 − 2 ∙ ℎ𝑓2 = 161,053 𝑚𝑚 

Where dedendum is: 

ℎ𝑓1 = 𝑚𝑛 ∙ (ℎ0𝑓
∗ − 𝑥1) = 1,91 𝑚𝑚 

ℎ𝑓2 = 𝑚𝑛 ∙ (ℎ0𝑓
∗ − 𝑥2) = 2,153 𝑚𝑚 

ℎ0𝑓
∗ = 1,25 

 

 
 



 

 
 

 

 

 

► Base circle diameter  𝒅𝒃𝟏 ;  𝒅𝒃𝟐 

𝑑𝑏1 = 𝑑1 ∙ cos(𝛼𝑡) = 76,277 𝑚𝑚 

𝑑𝑏2 = 𝑑2 ∙ cos(𝛼𝑡) = 154,735 𝑚𝑚 
 
 

 
Figure 4 – Geometrical elements for gears 

 

► Rolling diameter 𝒅𝒘𝟏; 𝒅𝒘𝟐 

𝑑𝑤1 = 𝑑1 ∙
𝑐𝑜𝑠 (𝛼𝑡)

𝑐𝑜𝑠 (𝛼𝑤𝑡)
= 82,543 𝑚𝑚 

𝑑𝑤2 = 𝑑2 ∙
𝑐𝑜𝑠 (𝛼𝑡)

𝑐𝑜𝑠 (𝛼𝑤𝑡)
= 167,425 𝑚𝑚 

► Gear width 𝒃𝟏; 𝒃𝟐 

𝑏2 = 𝑎𝑤 ∙ 𝜓𝑎 = 58 𝑚𝑚 

𝑏1 = 𝑏2 + 𝑚𝑛 = 63 𝑚𝑚 

4.7.  Echivalent gear elements 

 The echivalent gear teeth number 𝒛𝒏𝟏;  𝒛𝒏𝟐 

𝑧𝑛1 =
𝑧1

𝑐𝑜𝑠𝛽3
= 38,83 =>  𝑧𝑛1 = 39 

𝑧𝑛2 =
𝑧2

𝑐𝑜𝑠𝛽3
= 78,78 =>  𝑧𝑛2 = 79 

 The equivalent gear pitch diameter 𝒅𝒏𝟏;  𝒅𝒏𝟐 

𝑑𝑛1 =
𝑑1

𝑐𝑜𝑠2𝛽
= 87,367 𝑚𝑚 

𝑑𝑛2 =
𝑑2

𝑐𝑜𝑠2𝛽
= 177,231 𝑚𝑚 

 The equivalent top land diameter 𝒅𝒂𝒏𝟏;  𝒅𝒂𝒏𝟐 

𝑑𝑎𝑛1 = 𝑑𝑛1 + 𝑑𝑎1 − 𝑑1 = 93,667 𝑚𝑚 

𝑑𝑎𝑛2 = 𝑑𝑛2 + 𝑑𝑎2 − 𝑑2 = 183,049 𝑚𝑚 

 

 The equivalent base circle diameter 𝒅𝒃𝒏𝟏;  𝒅𝒃𝒏𝟐 

𝑑𝑏𝑛1=𝑑𝑛1 ∙ 𝑐𝑜𝑠𝛼𝑛 = 82,098 𝑚𝑚 

𝑑𝑏𝑛2=𝑑𝑛2 ∙ 𝑐𝑜𝑠𝛼𝑛 = 166,543 𝑚𝑚 
 

 The echivalent distance between axes, [mm]𝒂𝒘𝒏 

𝑎𝑤𝑛 ≥
𝑎𝑤

𝑐𝑜𝑠𝛽𝑏
∙

𝑐𝑜𝑠𝛼𝑛

𝑐𝑜𝑠𝛼𝑤𝑛
= 110,045 𝑚𝑚 

 



 

 
 

 

 

 

Where: 

𝛽𝑏 = 𝑎𝑟𝑐𝑡𝑔 (
𝑑𝑏1

𝑑1
𝑡𝑔𝛽) = 14,07° 

𝛽𝑤 = 𝑎𝑟𝑐𝑡𝑔 (
𝑑𝑤1

𝑑1
𝑡𝑔𝛽) = 15,18° 

𝛼𝑤𝑛 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑐𝑜𝑠𝛼𝑤𝑡 ∙ 𝑐𝑜𝑠𝛽𝑏

𝑐𝑜𝑠𝛽𝑤
) = 21,78° 

 

From Table 1 we’ll take 𝑎𝑤𝑛 = 112 𝑚𝑚 

 

 The equivalente normale module 𝒎𝒏𝒏 

𝑚𝑛𝑛 =
2 ∙ 𝑎𝑤𝑛 ∙ 𝑐𝑜𝑠𝛽𝑤

𝑧𝑛1 + 𝑧𝑛2
= 1,83 𝑚𝑚 

The new module now is 𝑚𝑛𝑛 = 1,75 

5.  Calculating the gear mass (volume) 

The gearing weight is: 

𝑀𝑔𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑉𝑔𝑒𝑎𝑟𝑖𝑛𝑔 ∙ 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

 

Where: 

𝑉𝑔𝑒𝑎𝑟𝑖𝑛𝑔  – gear unit volume 

𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 – density of the gear wheel material: 𝜌𝑚𝑎𝑥 = 7,85 ∙ 10−6 𝑘𝑔/𝑚𝑚3 

 

The gear unit volume is: 

𝑉𝑔𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑉𝑧1 + 𝑉𝑧2 

Where: 

𝑉𝑧1 – pinion volume, [𝑚𝑚3] 

𝑉𝑧2 – gear volume, [𝑚𝑚3] 

 

We write in generalized form the relationships for volume determination using the index “i” (i-1 for 
the pinion, i-2 for the gear). Based on this notation the volume of the cylindrical inclined teeth is: 

𝑉𝑧 𝑖 = 𝐴𝑖 ∙ 𝑏𝑖 
 

Where: 

𝐴𝑖 – area of the cylindrical front surface with inclined teeth, [𝑚𝑚2]  

𝑏𝑖 – width of cylindrical wheels with inclined teeth, [mm] 

 
Area of the cylindrical front surface with inclined teeth is: 

𝐴𝑖 = 𝐴𝑑𝑖𝑠𝑐 𝑖 + 𝐴𝑧 𝑖 ∙ 𝑧𝑖 
Where: 

𝐴𝑑𝑖𝑠𝑐 𝑖 – front surface area of the disc 

𝐴𝑧 𝑖 – area of the cylindrical tooth front surface 

𝐴𝑑𝑖𝑠𝑐 𝑖 =
𝜋 ∙ 𝑑𝑓 𝑖

2

4
 

Where: 

𝑑𝑓 𝑖 – root diameter of the cylindrical wheel 

 

For calculating the area of the front surface of the cylindrical toothed wheel tooth, its surface has 

been divided into several circular sectors of known rays and angles (Figure 5). 
 



 

 
 

 

 

 

                                    
 

Figure 5 – Dividing the front surface                                      Figure 6 – Involute chart area 

                 of the gear wheel 

 

With notation in Figure 5, the front surface area can be written as follows: 

𝐴𝑧 𝑖 = 2 ∙ 𝐴𝐴𝐸𝑀 𝑖 + 𝐴𝐴𝑀𝑁𝑃 𝑖 + 𝐴𝐸𝐻𝐾𝐹 𝑖 + 2 ∙ 𝐴𝑅 𝑖 
 

Where: 

𝐴𝐴𝐸𝑀 𝑖 – contour area defined by points A, E, M, [𝑚𝑚2] 
𝐴𝐴𝑀𝑁𝑃 𝑖 – contour area defined by points A, M, N, P, [𝑚𝑚2] 
𝐴𝐸𝐻𝐾𝐹 𝑖 – contour area defined by points E, H, K, F, [𝑚𝑚2] 
𝐴𝑅 𝑖 – zone conection area (outline bounded by points E, G, H, [𝑚𝑚2] 
 

Contour area defined by points A, E and M is: 

𝐴𝐴𝐸𝑀 𝑖 = 𝐴𝑂𝑖 𝐸𝐴𝐵𝐷 𝑖 − 𝐴Δ𝑂𝑖 𝐵𝐴 − 𝐴𝑠𝑒𝑐𝑡 𝑂𝑖𝐸𝑀 = 3428,824 𝑚𝑚2 
 

Contour area defined by points A, M, N and P is: 

𝐴𝐴𝑀𝑁𝑃 𝑖 = 𝐴𝑠𝑒𝑐𝑡 𝑂𝑖𝐴𝑃 − 𝐴𝑠𝑒𝑐𝑡 𝑂𝑖𝑀𝑁 = 2241,68 𝑚𝑚2 
 

Contour area defined by points E, H, K and F is: 

𝐴𝐸𝐻𝐾𝐹 𝑖 = 𝐴𝑠𝑒𝑐𝑡 𝑂𝑖𝐸𝐹 − 𝐴𝑠𝑒𝑐𝑡 𝑂𝑖𝐻𝐾 = 3725,512 𝑚𝑚2 
 

Zone conection area is: 

𝐴𝑅 𝑖 = 𝐴Δ𝑂𝑂𝑖𝐸 − 𝐴𝑠𝑒𝑐𝑡 𝑂𝑖𝐺𝐻 − 𝐴𝑠𝑒𝑐𝑡 𝑂𝐺𝐸 = 2231,278 𝑚𝑚2 
 

Area of the cylindrical front surface with inclined teeth is: 

𝐴𝑖 = 𝐴𝑑𝑖𝑠𝑐 𝑖 + 𝐴𝑧 𝑖 ∙ 𝑧𝑖= = 17287,396 𝑚𝑚2 
 
The volume of the cylindrical inclined teeth is: 

𝑉𝑧 𝑖 = 𝐴𝑖 ∙ 𝑏𝑖 = 1099910,57 𝑚𝑚3 
 
The gearing weight is: 

𝑀𝑔𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑉𝑔𝑒𝑎𝑟𝑖𝑛𝑔 ∙ 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 8,634 𝑘𝑔 

 
 

 



 

 
 

 

 

 

6.  The objective of the optimization problem 

For some areas where toothed gears are used, such as the aerospace industry, the automotive 

construction  etc., reduced gear mass (volume) can be an important parameter to become an optimization 

criterion. 
For this reazon it was considered as a function gear unit mass. We want to minimize this function. 

 

𝑀𝑔𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑉𝑔𝑒𝑎𝑟𝑖𝑛𝑔 ∙ 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 → 𝑚𝑖𝑛 

 

The Mathcad 15 software was used to solve the optimal design problem. The values of the minimum 

mass variable are shown in Table 2. 
 

Tabel 2 – Values of solution variables with minimum mass 

 

Nr. Variable Symbol Valoare 

1 Distance between axes, [mm] 𝑎𝑤 112 

2 Coefficient of displacement in the normal plane for the pinion 𝑥𝑠 1 

3 Coefficient ratio between the width and the axial distance 𝜓𝑎 0,45 

4 Inclination helix angle on the pitch cylinder 𝛽 14,07° 

5 Gear teeth number 𝑧1 39 

 

Table 3 presents a comparison of the main geometric elements of the gear in the two variants 
(classical and optimal respectively). 

 

Tabel 3 - Comparison between the two variants of gears 
 

Nr. Characteristic Classic version Optimal version 

pinion wheel pinion  wheel 

1 Normal module, [mm] 2,25 1,75 

2 Distance between axes, [mm] 125 112 

3 Number of teeth of gears 35 71 39 79 

4 Width gears, [mm] 63 58 67 62 

5 Root diameter, [mm] 77,695 161,053 69,925 145,558 

6 Pitch diameter, [mm] 81,515 165,359 73,363 148,823 

7 Rolling diameter, [mm] 82,543 167,425 74,288 150,682 

8 Top land diameter, [mm] 87,815 171,177 79,033 154,059 

9 Base circle diameter, [mm] 76,277 154,735 67,124 140,808 

10 Gearing weith, [kg] 8,634 7,403 

 

7.  Conclusions 

 
For over 20 years, Mathcad is the standard recognized performing, documenting and working 

collaboratively with engineering calculations, methods and algorithms in design. 

Unlike spreadsheet programs, where equations are expressed cryptic and conversion between 
systems of different units is impossible, or programming languages, accessible mainly programmers, 

Mathcad is a much better perform and manage engineering calculations, they being easy to achieve, 

understood, verified, communicated and followed logically. 
 

 

 



 

 
 

 

 

 

Based on the values in Table 3, it can be noticed that in the optimal variant the wheels 

of gearing are wider (coefficient of ratio between the width and the axial distance increased from 

0,46 – 0,59) but with smaller diameters. The gearing weight decreased from 8,634 to 7,403 kg (which 

which represents a 14,25% decrease in mass) on the idea that the same conditions 
function for both variants. 
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