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Abstract. For the most machine learning methods, for cyclo-stationary or even stochastic 

signals, the performance depends critically on hyperparameters. Moreover, the tuning of more 

hyperparameters based on the feedback of the performance model will leak an increasingly 

significant amount of information about the validation set into the model. Therefore, we 

propose in this research two classes of hyperparameters, a general class that makes the 

characterization of general signal curve and the second, a specific class that define special 

parameters connected to the phenomena type (e.g. sensor type).  

1.  Introduction 

The time-dependent signals cannot be modeled using invariant time patterns. But the analysis and 

modeling of those processes should consider that systems which vary over time can be approximated 

by invariant linear time patterns over short intervals. For long periods, processes should be analyzed 

by time-dependent modeling. 

A general feature of time-sensitive signals is that they contain non-stationary transient events. The 

characteristics of such non-stationary processes use time-varying parametric models. There are two 

main classes of methods for solving these models. 

The first class uses recursive estimation of variable coefficients according to time, and the second is to 

constrain the evolution of the coefficient of linear or nonlinear combinations of basic functions with 

appropriate properties, called deterministic and stochastic  regressive approaches. 

2.  Model Overview 

There are many models able to be applied for this purpose. For time-varying processes an 

autoregressive model is defined by: 

 

𝑓(𝑡) = ∑ 𝜇𝑘  (𝑡)𝑓(𝑡 − 𝑘)𝑅
𝑘=1 +  ∑ 𝜌𝑙(𝑡)𝑣(𝑡 − 𝑙)𝑆

𝑙=1 + 𝑒𝑟𝑟(𝑡)                                 (1) 

 

where 

𝜇𝑘(𝑡) 𝑎𝑛𝑑 𝜌𝑙(𝑡)  are ARX(R,S) time-varying parameters  

𝑣(𝑡 − 𝑙) is the input signal 

R and S are the model orders (user choice values) 

err(t) is the prediction error function 

ARX function estimates parameters of ARX model using least squares using specific model 

structure: 

𝑓(𝑡) + 𝜇1 𝑓(𝑡 − 1) + ⋯ + 𝜇𝑘𝑓(𝑡 − 𝑘) =  𝜌1(𝑡)𝑣(𝑡 − 𝑛𝑠) +     …   + 𝜌𝑙(𝑡)𝑣(𝑡 −
𝑙 − 𝑛𝑠 + 1) + 𝑒𝑟𝑟(𝑡)                                                                                                   (2) 



 

 

 

 

 

 

where  

- 𝑛𝑠 is number of input samples that occur before the input affects the output, also called 

the dead time in the system 

- 𝑓(𝑡 − 1) … 𝑓(𝑡 − 𝑘)  are previous outputs on which the current output depends 

- 𝑣(𝑡 − 𝑛𝑠) + ⋯ + 𝜌𝑙(𝑡)𝑣(𝑡 − 𝑙 − 𝑛𝑠 + 1)  previous and delayed inputs on which the 

current output depends 

 

The assumption is the maximum value orders are time invariant. 

Therefore, the method transforms time varying parameters in multi-wavelet basis function ζ𝑛(𝑡), 

where n=1,2, … ,L. 

 

After several substitutions results: 

 

𝑓(𝑡) = ∑ ∑ 𝜆𝑘,𝑛 𝑓𝑛(𝑡 − 𝑘)𝐿
𝑛=1

𝑅
𝑘=1 +  ∑ ∑ 𝜎𝑙,𝑛

𝐿
𝑛=1 𝑣𝑛(𝑡 − 𝑙)𝑆

𝑙=1 + 𝑒𝑟𝑟(𝑡)                                 (3) 

 

The model approximates  the time varying parameters which could be assimilate as hyper-parameters 

after several adjustments.  The approximation of 𝜇𝑘(𝑡) 𝑎𝑛𝑑 𝜌𝑙(𝑡)  supposes to estimate same function 

values, as the numerical method request. 

2.1.  Function based on Multi-Wavelet 

According to the wavelet theory, a scalar function that is scalar integrable 𝑓𝜖𝐿2(𝑅) can be 

approximated with multiresolution wavelet decomposition: 

 

𝑓(𝑥) = ∑ 𝜆𝑙0 ,𝑘∅𝑙0,𝑘 (𝑥)𝑘 +  ∑ ∑ 𝐶Ψ𝑗,𝑘(𝑥)𝑘𝑗>𝑗0
                                     (4) 

 

where  

Ψ𝑙,𝑘(𝑥) = 2
𝑙

2Ψ(2𝑙𝑥 − 𝑘)                                                          (5) 

Φ𝑙,𝑘(𝑥) = 2
𝑙

2Φ(2𝑙𝑥 − 𝑘)                                                           (6) 

 

are the wavelet family, shifted and dilated from mother wavelet Ψ and scaling function ∅. 

The wavelet decomposition  coefficients are 𝜆𝑙0,𝑘  and 𝜎𝑙,𝑛 . 

A square integrable function y(x), as multiresolution analysis theory demonstrates, can be 

approximated for a scale level resolution enough large as: 

Φ𝑙,𝑘(𝑥) = 2
𝑙

2Φ(2𝑙𝑥 − 𝑘)                                                           (7) 

 

The coefficients 𝜇𝑘(𝑡)𝑎𝑛𝑑 𝜌𝑙(𝑡) of (1) are approximated using functions of the family: 

  

𝜇𝑘(𝑡) = ∑ 𝑐𝑘,𝑖
(𝑠)

𝑖𝜖Γ𝑠

Φ𝑘,𝑖
(𝑠)

 (
𝑡

𝑁
) + ∑ 𝑐𝑘,𝑖

(𝑢)

𝑖𝜖Γ𝑢

Φ𝑘,𝑖
(𝑢)

 (
𝑡

𝑁
) +  ∑ 𝑐𝑘,𝑖

(ℎ)

𝑖𝜖Γℎ

Φ𝑘,𝑖
(ℎ)

 (
𝑡

𝑁
)  

 

𝜌𝑙(𝑡) = ∑ 𝑑𝑙,𝑖
(𝑠)

𝑖𝜖Γ𝑠
Φ𝑖

(𝑠)
 (

𝑡

𝑁
) + ∑ 𝑑𝑙,𝑖

(𝑢)
𝑖𝜖Γ𝑢

Φ𝑖
(𝑢)

 (
𝑡

𝑁
) +  ∑ 𝑑𝑙,𝑖

(ℎ)
𝑖𝜖Γℎ

Φ𝑖
(ℎ)

 (
𝑡

𝑁
)                 (8) 

where : 

1 ≤ 𝑠 ≤ 𝑢 ≤ ℎ ≤ 4,    𝑡 = 1,2, … , 𝑁 ;    

N is the observations number of the signal. 

 

The experimental results for s=2, u=3 and h=4 recover in a right manner the time varying coefficients. 



 

 

 

 

 

 

However, the first and second order B-splines which computes Φ𝑖
(𝑛)

  are working well [11] as is evident 

from the time-dependent coefficients expression. 

3.  Time-varying Signal  model 

 

The sequence for processing SHA-512 method, suitable for a low-level implementation: 

Assuming the time-varying model as: 

𝑓(𝑡) = 𝜇1(𝑡)𝑓(𝑡 − 1) +  𝜇2(𝑡)𝑓(𝑡 − 2) + 𝑒𝑟𝑟(𝑡)                                   (9) 

 

the definitions for time-varying parameters are: 

𝜇1(𝑡) = 2cos (2𝜋𝑦(𝑡)) 

𝜇2(𝑡) = −1,     𝑡 = 1, … , 1000                                                    (10) 

where y(t) are values defined by the user. 

4.  Block Least Mean Square  

 

The Least Mean Square algorithms, e.g. conventional and normalized , LMS are effectively solving 

the dynamic regression problem.    

For example, the adaptive algorithm of BLMS: 

 

𝑒𝑟𝑟(𝑚𝐿 + 𝑖) = 𝑠(𝑚𝐿 + 𝑖) − 𝑧̂𝐻 (𝑚) 𝑣 (𝑚𝐿 + 𝑖)                                       (11) 

 

𝑧̂(𝑚 + 1) =  𝑧̂(𝑚) +  𝛿 ∑ 𝑒𝑟𝑟∗(𝑚𝐿 + 𝑗) 𝑣(𝑚𝐿 + 𝑗)𝐿−1
𝑙=0                                   (12) 

 

where 

 0 ≤ 𝑖 ≤ 𝐿 − 1,      𝑚 = 1,2, … 

L is the length of the block; 

𝛿 is the step size parameter; 

M is the number of taps; 

err(t) is the error at time t. 

 

The finite vector 𝑽(𝑡): 

𝑽(𝑡) = [
𝑣(𝑡)

…
𝑣(𝑦 − 𝑀 + 1)

]                                                               (13) 

and 

 

𝒁̂(𝑚) = [
𝑧̂0(𝑚)

…
𝑧̂𝑀−1(𝑚)

]                                                                      (14) 

 

Finally, the complex BLPS algorithm is implementing using the FFT algorithm using method  

described in [11].  

5.  Conclusions 

 

The ARX model presented in this work gives a good estimation for time-varying parameters.  As they 

can be used subsequently to improve the estimation of the model parameters and are tuned for a better 

prediction of signal model then these parameters satisfy the hyperparameters characteristics (defined 

in Applied Predictive Modelling [1]) 



 

 

 

 

 

 

For the future work, should process both the standard deviations and the mean absolute error for 

different the parameter estimated. The statistically will confirm or not the better performance of the 

multi-wavelet basis function method. The classical normalized least mean square (NLMS) method 

could be also used for simulation and compared with the method based on multi-wavelet basis 

functions. 
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