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Abstract. Quantum communications are becoming very quickly a reality. There are
huge  advancement  made  in  the  field  of  quantum  internet.  Recently,  IBM  has
announced  the  first  commercial  quantum computer  with  20  qubits.  Given  all  the
advancements in the field, in this paper we investigate how quantum technologies can
be  applied in  maritime communications.  In  this  paper  we address  the  problem of
international  maritime  flag  signals.  More  exactly,  we  proposed  some  quantum
communication schemes for international maritime signal flags. We are also study the
efficiency  and  security  boost  that  quantum  communications  give  in  this  type  of
maritime communication.

1.  Introduction

Quantum  computers  are  no  longer  an  experiment.  Recently,  IBM  has  announced  the  first
commercial  quantum  computer,  IBM  Q  System  One  [1].  Most  papers  in  the  area  of  quantum
computing popularize the fact that our cryptographic primitives are in danger [2]. This is true, one
important algorithm is the quantum algorithm for factorization. This algorithm can solve the problem
of factorizing two integers in polynomial time, making all our current practical cryptography useless.
Although quantum computers are a threat from the perspective of cryptography, there are also many
advantages. One of these advantages is quantum communication. These type of communication are
much faster than the classical counterparts. The major purpose of this paper is to offer an introduction
to  quantum  communication.  We  will  see  how  these  type  of  communication  are  analogous  with
maritime flag communications. We will also offer an implementation of a quantum communication
scheme using IBM Q composer. 

1.1.  Maritime flags

International maritime signal flags refer at a set of rules by which one or more flags are used to
communicate  messages  between ships.  Every  day we listen  to  music  from our  radios  in  the  car,
traveling from home to work. We receive messages from our beloved ones on WhatsApp. We post our
messages to our friends and to the world using Facebook or Twister. Taking all this into account, we
may ask what is the purpose of communicating a message using signal flags? An old proverb says that
“a picture worth a thousand words”. Communications by signal flags are used mostly in two cases:
when there is a danger (e.g. men overboard)  or when the radio cannot be useful (e.g. when the radio
system is down or there is a necessity for maintaining radio silence). At sea, not all colors are easily



recognized but  only a few of them. These are red, blue, yellow, black and white. The most used
combinations of these colors are: red and white, yellow and blue, blue and white. There are 26 flags
for each letter from the English alphabet. These are depicted in Figure 1. 

There are also 10 flags for each digit plus 3 flags symbolizing “first”, “second” and “third”.  Those are
depicted in Figure 2. 

There is a major difference between flags signal communication and radio communication. The
communication by flags can be “intercepted” only by  those who see the flags. To see the flags, one
ship must be in proximity of the ship which raised the flags. That means the ship which wants to
communicate  will  always  know  who  receive  the  message.  On  the  other  hand,  in  radio
communications, multiple parties can intercept one communication without the transmitter knowing it.
More technically we can say that  flag communications cannot  be intercepted without  leaving any
proof of that interception. We will see how can we achieve the same goal and more using quantum
communications. 

Figure 1: Flags for letters



1.2.  A short introduction into quantum computing

The playground of quantum computations is a Hilbert vector space [3]. That is  vector space in
which one can define the norm of a vector. The quantum analog of a classical bit is now a vector in a
Hilbert space. This vector is called a qubit. Like all vector spaces, we must have a base. The most used
basis in quantum computations is the ⟨ 0|  ⟨1| basis. An arbitrary vector can be described in this basis
as in equation (1).

     ⟨ψ|=p1 ⟨0|+ p2 ⟨1|                                                                  (1)

where  p1and  p2are complex numbers [4].  The vector  ⟨ψ| is not an arbitrary vector from a vector
space. It describes a quantum state. For that reason, in order to model quantum effects, a restriction
must  be put on the numbers p1and p2. The restriction is the following:

     p1
2
+ p2

2
=1                                                                          (2)

This restriction comes naturally from the mathematical modeling of quantum superposition. To
understand more intuitively what a quantum superposition is, let’s consider the following example.
Suppose we have an electron orbiting around the nucleus of an atom. Suppose that there are two
possible states for that electron: the lower orbit and the upper orbit. We know from quantum physics
that the electron can make a “step” from a lower orbit to the upper one or vice-versa. We also know
that the electron will never make “half” of the step. When we measure the electron, we will find it into
lower  orbit  or  upper  orbit  but  never  in  between.  But  what  happens  when  we don’t  measure  the
electron. Is it in the state of lower orbit or in the state of upper orbit? The truth is that we don’t know
until we measure it. Before the measurement happens, we say the electron is in its lower orbit with the
probability p1

2and in its upper orbit with a probability of p2
2. We can say from one point of view that

the electron is in the same time in lower and upper orbit. This is the quantum superposition. We call
the lower and upper orbit states, basis states. Linking this physical example with the mathematical
modeling we obtain exactly what is described in the equations (1) and (2).  A qubit is a quantum
superposition. The basis states are often two vectors that we denote by ⟨ 0|and ⟨1|. When we measure a

Figure 2: Flags for numbers



qubit,  we can obtain one of the two possible basis states. Basically, when measuring a qubit,  one
obtains a classical bit. The advantage  of the qubit over its classical counterpart is the following: while
a classical bit of information can take just two values (0 and 1), a qubit can take in theory an infinity of
values (every combination of complex numbers p1and p2determines a qubit). We will see that in fact,
we don’t  use  an infinite  number  of combinations,  but  only a  few of them.   The state  ⟨ψ|can be

described by the vector (
p1

p2
)when considering mathematical modeling. 

Making a classical computation resumes at transforming one set of bits into another set of bits.
By  analogy,  making a  quantum computation  resumes  at  transforming a  qubit  into  another  qubit.
Mathematically, quantum computations can be described using unitary transformations from within a
vector  space.  A unitary transformation can be described by a matrix  for  which the inverse  is  its
transpose conjugate, that is:

     UU∗
=U∗U=I                                                                           (3)

where U is the matrix that describes the unitary transformation. 
Looking at a unitary transformation we can say how the qubit is changing after the computation. For
example, suppose we have a qubit in the basis state (the basis states are also known as ground states)
⟨ 0|. Let’s consider the Hadamard transformation given by (4).

H=
1
√2 (1 1

1 −1)                                                                         (4)

We can observe that the state ⟨ 0| can be written as ⟨ 0|=1 ⟨ 0|+0 ⟨1| and the state ⟨1| can be written as

⟨1|=0 ⟨ 0|+1 ⟨1|, thus we can write the state ⟨ 0| as the vector (10) and the state ⟨1| as the vector (01).
We can now see what is the effect of a Hadamard gate on a qubit originally in state ⟨ 0|. 

⟨ψ|=H ⟨0|=
1

√(2 ) (
1 1
1 − 1)(

1
0)=(

1

√ (2 )

1

√ (2 )
)                                      (6)

Applying a Hadamard gate to a qubit initially in the state  ⟨ 0| we obtain a qubit in the state  ⟨ψ| as
described in (6).  Taking into consideration (1), when we measure this qubit we will obtain 0 with a

probability of 
1
2

 and 1 with the same probability. In practice, we can determine these probabilities by

repeating the experiment a number of times after that we can calculate the frequencies of the results.
On IBM Q Composer the corresponding circuit to equation (6) is depicted in Figure 3 [5]. 

Figure 3: The IBM Q Composer Circuit for 
a Hadamard gate



We have  run the circuit from Figure 3 1000 time and we have the following frequencies described in
Figure 4. 

We can see that the above experiment is consistent with the theoretical result from (6). 
Other quantum gates and their effects are depicted in Figure 5.

 

One important quantum gate that acts on a system of two qubits is the C-NOT gate. This gate flips the
second qubit when the first one is 1 and leave the system as it is whenever the first qubit is 0. 

2.  Superdense coding

Superdense coding represents a quantum communication method more efficient than classical
communications.  With  this  method,  one  party  can  send  to  another  party  two  classical  bits  of
information using just one qubit. It is necessary first to talk about a special quantum state, the Bell
state [6].

2.1.  Bell state

The Bell state or the entangled state is a special state of a quantum system consisting of two
qubits. There are four Bell states described in equations (7)-(10) [7].

Figure 4: The distribution of results obtained by running the circuit from Figure 3

Figure 5: Quantum gates



⟨ ϕ1|= 1

√ (2 )
( ⟨ 00|+⟨11|)                                                             (7)

⟨ ϕ2|= 1

√ (2 )
( ⟨ 00|− ⟨11|)                                                            (8)

⟨ ϕ3|= 1

√ (2 )
( ⟨ 01|+ ⟨10|)                                                             (9)

⟨ ϕ4|= 1

√(2 )
( ⟨01|− ⟨10|)                                                          (10)

What is special at a Bell state is that when we measure one of the qubits we can say for sure what will

be the value of the other qubit after measurement. For example, consider the state  ⟨ ϕ1|. There is a

probability of 
1
2

 that the system is in the state ⟨ 00| and a 
1
2

 probability that the system is in the state

⟨11|. 
Although the probability that the first is in the state  ⟨ 0|, if we find the qubit in this state after

measuring, we will know for sure that that the second qubit is also in that state ⟨ 0|. More intuitively,
we can see this by looking at the equation (7) and see that we only have two possible combinations in
which the system can be after measurement. 

2.2.  The coding algorithm

To describe the protocol, we will use two parties, Alice and Bob. 
Step 1. Alice and Bob create two qubits in a Bell state. On qubit belongs to Alice and one to Bob. 
Step 2. If Alice wishes to transmit the number x∈ {0,1,2,3 }, she will apply to her qubit the gate G x

where G0=I ,G1=Z ,G2=X ,G3=Z∗ X .
Step 3. Alice will send her qubit to Bob
Step 4. Bob will apply to the system formed by Alice’s qubit and his qubit a C-NOT gate with Alice’s
qubit as control qubit and his qubit as target qubit. After that, he will act with a Hadamard gate on
Alice’s qubit and measure the system. The result will encode the number  x. For example, if Alice
wanted to transmit the number 3 (in binary 10), when Bob measures the system he will find Alice’s
qubit in state 1 and his qubit in state 0.
The core of the protocol is the entangled state. We will now describe how to implement a Bell state on
IBM Q. The circuit is depicted in Figure 6. 

Figure 6: Bell circuit



If we run the circuit from Figure 6 1000 times, we obtain the statistics described in Figure 7.

We can see that we have obtained the state ⟨ 00| within 50.4% cases and the state ⟨11| in 49.6%
cases. 
This method of communication is similar to maritime flag communication. As we have stated in the
previous section, in a maritime flag communication we can see who can intercept the communication.
This is valid in superdense coding too. In order to decode the message, one party must have both
qubits. That means, if a third entity wishes to determine what message Alice send, it will have to be in
close proximity of Bob in order to manipulate his qubit. In a maritime flag communication, we do not
have to encode the information using only two classical bits. As we have seen, we have a flag for each
letter so we can transmit 26 symbols. In superdense coding, we are not limited at only 2 classical bits
of information. Instead, we can use 4 symbols to encode our information. 

3.  Conclusions

In this  paper,  we  wanted to  provide  a  simple  introduction  to  the  quantum computing  field.
Although, at first  sight, the maritime flag communications and superdense coding have nothing in
common we have shown the opposite. Both forms of communication have in common the property
that no one can intercept the communication without revealing its presence. We also wanted to show
that quantum computing is no longer an experiment by providing some real circuit implementations on
IBM Q Composer. The analogy between maritime flag communication and superdense coding shows
how quantum information can be applied in a real-world situation. In this paper we don’t claim any
novelty on the scientific part, we just showed how to distance fields may be closer in unexpected
ways. 
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