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Abstract. This study focuses on static deflection analysis of uniformly lateral loaded composite 

thin rectangular plate with uniformly lateral loads. Stacking sequence of symmetrically 

laminated quasi-isotropic plates has the sequence of the orientation angles -45°, 0°, +45°, 90°. 

Boundary conditions were selected as clamped and simply supported hinges at the edges of the 

plates. The Finite Difference Method (FDM) was used to determine the maximum deflection of 

the plates based on the governing differential equations of Classical Laminated Plate Theory 

(CLPT). Effect of the lamination type, boundary condition and aspect ratio (a/b, b/a) on 

maximum deflections was investigated parametrically, which are of importance in preliminary 

design phase of composite plates. Results obtained were compared with those of the Finite 

Element Method (FEM) received from literature. It was found out that the both groups of the 

results agree on. 

1.  Introduction 
 

Composite materials have been extensively preferred in marine engineering applications because of 

the high specific strength and high specific rigidity since few decades. Application of composites in 

commercial and military ships was given in Shenoi and Wellicome [1,2] and Mouritz et al. [3]. Ship 

structures consist of plates and shells supported with stiffener elements. Depending on the longitudinal 

or transversal positioning of stiffener elements, the construction type is named to either transversal or 

longitudinal supporting system. 

It is not possible to solve the deflection problems in a plate by analytical methods except for some 

special cases. Due to any mathematical difficulties, some approximate numerical methods must be used 

to solve these problems. Although the existence of numerous finite element-based software packages, 

the Finite Difference Method (FDM) can still be regarded as a numerical method that has merits due to 

its straightforward approach and a minimum requirement on hardware [4]. 

The Finite Difference Method have been used in bending of the isotropic plates by many researchers. 

Ezeh et al. [5] studied pure bending analysis of thin rectangular flat isotropic plates using ordinary finite 

difference method. Ghods and Mir [6] examined maximum deflection of isotropic rectangular thin plates 

by using this method. Umeonyiagu et al. [7] considered flexural analysis of isotropic rectangular thin 

plates using an improved finite difference method. Deflection of laminated orthotropic plate subjected 

to uniformly distributed loaded was investigated based on the Classical Laminated Plate Theory (CLPT) 

using finite difference method by Saraçoğlu and Özçelikörs [8]. The researchers examined regular 

symmetric and regular antisymmetric composite square plates that were simply supported with four 

edges. 



 

 

 

 

 

 

In symmetrically layered structures, the angles of the layers are symmetrical with respect to the 

central axis. This type of structures are preferred in production, since during the cooling process, they 

remain flat. Shear modulus of the quasi-isotropic plates with −45°, 0°, 45° and 90° angles is greater than 

that of cross-ply. It is stated that, with a few exceptions, quasi-isotropic structure is commonly used for 

the air vehicles of NASA [9]. 

In this parametric study, maximum deflections of 24 different types of symmetrically laminated 

quasi-isotropic thin rectangular plates under uniformly lateral loads, were investigated with the use of 

the Finite Difference Method (FDM), with boundary conditions with clamped or simply supported edges 

of the plates. The obtained results were compared with the results of the Finite Element Method (FEM) 

received from another research of Altunsaray and Bayer [10]. It was found that the results of FDM 

agreed closely on those of the FEM. 

2.  Analysis 

2.1.  Material Geometry of plates, material properties and lamination types 
 

The plate geometry is shown in Fig. 1. Material properties of T300-934 coded carbon/epoxy [12] are 

given in Table 1. Aspect ratios used in this parametrical study are given in Table 2. Twenty four different 

types of lamination of quasi-isotropic plates examined in this study are shown in Table 3. Quasi-isotropic 

plates have the combination of four different orientation angles (−45°, 0°, 45° and 90°). The thickness 

of each lamina of the plates (t) is 0.0002 meter and the thickness of the plate formed by 16 laminates (h) 

is equal to 0.0032 meter. Boundary conditions of simply supported and clamped cases were investigated. 

As the uniformly lateral load, the value of 10000 N/m2 was used. 

 
Figure 1. Uniformly lateral loaded (q) with rectangular plate 

 

Table 1. Mechanical properties of carbon/epoxy ( T300-934) [11] 

Longitudinal Young Modulus (E11) 148x109 (N/m2) 

Transversal Young Modulus (E22) 9.65x109 (N/m2) 

Longitudinal Shear Modulus (G12) 4.55x109 (N/m2) 

Longitudinal Poisson ratio (ν12) 0.3 

Laminate thickness (t) 0.185x10-3 – 0.213x10-3 (m) 

Density (𝜌0)  1.5 x103 (kg/m3) 

 

Short half side (a or b) is selected 0.2 m. Six different aspect ratios (a/b or b/a) are given in Table 2. 

 

Table 2. Aspect ratios of the plates studied 

a/b 1 1.2 1.4 1.6 1.8 2 

b/a 1 1.2 1.4 1.6 1.8 2 



 

 

 

 

 

 

 

Table 3. Symmetrically laminated quasi-isotropic plate types 

LT1 [-452/02/452/902]s LT13 [452/-452/02/902]s 

LT2 [-452/02/902/452]s LT14 [452/-452/902/02]s 

LT3 [-452/452/02/902]s LT15 [452/02/-452/902]s 

LT4 [-452/452/902/02]s LT16 [452/02/902/-452]s 

LT5 [-452/902/02/452]s LT17 [452/902/-452/02]s 

LT6 [-452/902/452/02]s LT18 [452/902/02/-452]s 

LT7 [02/-452/452/902]s LT19 [902/-452/02/452]s 

LT8 [02/-452/902/452]s LT20 [902/-452/452/02]s 

LT9 [02/452/-452/902]s LT21 [902/02/-452/452]s 

LT10 [02/452/902/-452]s LT22 [902/02/452/-452]s 

LT11 [02/902/-452/452]s LT23 [902/452/-452/02]s 

LT12 [02/902/452/-452]s LT24 [902/452/02/-452]s 

2.2 Classical Laminated Plate Theory (CLPT) 
 

 

In  the Classical Laminated Plate Theory, the bending-strain coupling matrix of symmetrically laminated 

plates ijB  is zero, the governing differential equation of the symmetrically laminated composite plates 

under the effect of uniform laterally load is given in Eq. (1) [12]. 

 

(𝐷11
𝜕4𝑤

𝜕𝑥4 + 4𝐷16
𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2 +  4𝐷26
𝜕4𝑤

𝜕𝑥𝜕𝑦3 + 𝐷22
𝜕4𝑤

𝜕𝑦4 ) − q(x, y) = 0 (Equation 1) 

 

where w and q indicate deflection function and load, respectively. The bending stiffness matrix elements 

D11, D12, D16, D22, D26 and D66 are calculated as in the Eq.(2). 

 

𝐷𝑖𝑗 =
1

3
∑ 𝑄𝑖𝑗

(𝑘)
(𝑧𝑘+1

3 − 𝑧𝑘
3)𝑁

𝑘=1                                                                                                (Equation 2) 

 

The elements of the transformed-reduced stiffness matrix ijQ are calculated separately for each lamina 

and given in below Eq.(3). 

 

𝑄11 = 𝑄11 𝑐𝑜𝑠4( 𝜃) + 2(𝑄12 + 2𝑄66) 𝑠𝑖𝑛2( 𝜃) 𝑐𝑜𝑠2( 𝜃) + 𝑄22 𝑠𝑖𝑛4( 𝜃)  (Equation 3-1) 

𝑄12 = (𝑄11 + 𝑄22 − 4𝑄66) 𝑠𝑖𝑛2( 𝜃) 𝑐𝑜𝑠2( 𝜃) + 𝑄12(𝑠𝑖𝑛4( 𝜃) + 𝑐𝑜𝑠4( 𝜃))  (Equation 3-2) 

𝑄22 = 𝑄11 𝑠𝑖𝑛4( 𝜃) + 2(𝑄12 + 2𝑄66) 𝑠𝑖𝑛2( 𝜃) 𝑐𝑜𝑠2( 𝜃) + 𝑄22 𝑐𝑜𝑠4( 𝜃)                         (Equation 3-3) 

𝑄16 = (𝑄11 − 𝑄12 − 2𝑄66) 𝑠𝑖𝑛( 𝜃) 𝑐𝑜𝑠3( 𝜃) + (𝑄12 − 𝑄22 + 2𝑄66) 𝑠𝑖𝑛3( 𝜃) 𝑐𝑜𝑠( 𝜃)   (Equation 3-4) 

𝑄26 = (𝑄11 − 𝑄12 − 2𝑄66) 𝑠𝑖𝑛3( 𝜃) 𝑐𝑜𝑠( 𝜃) + (𝑄12 − 𝑄22 + 2𝑄66) 𝑠𝑖𝑛( 𝜃) 𝑐𝑜𝑠3( 𝜃)  (Equation 3-5) 

𝑄66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) 𝑠𝑖𝑛2( 𝜃) 𝑐𝑜𝑠2( 𝜃) + 𝑄66(𝑠𝑖𝑛4( 𝜃) + 𝑐𝑜𝑠4( 𝜃))     (Equation 3-6) 

 



 

 

 

 

 

 

The elements of the reduced stiffness matrix ijQ  is given in terms of material constants in Eq.(4). 

𝑄11 = 𝐸11/(1 − 𝜈12𝜈21),        (Equation 4-1) 
 

𝑄12 = 𝜈12𝐸22/(1 − 𝜈12𝜈21),                       (Equation 4-2) 
 

𝑄22 = 𝐸22/(1 − 𝜈12𝜈21),        (Equation 4-3) 
 

𝑄66 = 𝐺12                    (Equation 4-4) 

 

By substituting the material constants (E, G and ), the angles of the laminas (𝜃) and the distance of 

each lamina from the reference plane into the Eqs. (2)-(3)-(4), the bending stiffness matrix elements  

in Eq. (2) were determined. 

 

In the case of clamped edges, the deflection and the slope along the edges of the plate are zero. 

 

𝑤 =
𝜕𝑤

𝜕𝑥
= 0  at  =x  0 and x = a      (Equation 5-1) 

 

𝑤 =
𝜕𝑤

𝜕𝑦
= 0  at =y  0 and y = b                                                                                  (Equation 5-2)   

                    

In the case of simply supported edges, the deflection and the bending moment along the edges of the 

plate are zero. 

𝑤 = 𝑀𝑥 =
𝜕𝑤2

𝜕𝑥2 = 0  at  =x  0 and x = a     (Equation 6-1) 

𝑤 = 𝑀𝑦 =
𝜕𝑤2

𝜕𝑦2 = 0  at =y  0 and y = b                         (Equation 6-2)                                                                

 

2.3 Finite differences method (FDM) 

 

Finite Difference Method is a numerical method used for obtaining approximate solutions of engineering 

problems. The derivatives in the governing differential equations are replaced by difference equations 

at some selected points of the plate. These points can be located at the joints of a square, or some other 

reference network, called a finite difference mesh. If the static problems of a plate can be described by 

a differential equation, it can be replaced at each mesh point by an equivalent finite difference equation.   

The boundary conditions are applied using a similar approach, setting then into the given values. 

Therefore, the domain in question becomes a system of linear equations, from which the values at the 

nodes of the mesh can be solved by conventional methods of linear algebra [4]. In this study, intervals 

between pivotal points in x and y directions (Δx and Δy) are taken to be a/20 and b/20 for a square plate 

and increasing mesh size 24 to 40 for rectangular plates shown in Table 4. The software MATLAB [13] 

was used for preparing a computer code to carry out these parametric analyses. 
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Table 4. Finite differences mesh grid of the square to rectangular plates studied 

a/b FDM mesh size b/a FDM mesh size 

1,0 20x20 1,0 20x20 

1,2 20x24 1,2 24x20 

1,4 20x28 1,4 28x20 

1,6 20x32 1,6 32x20 

1,8 20x36 1,8 36x20 

2,0 20x40 2,0 40x20 

 

The following central differences operators in Eq.(7-1–7-12) are used to obtain a finite difference 

scheme for the governing differential equation [9]. 

 
𝜕2𝑤

𝜕𝑥2 ≈
𝑤𝑖+𝛥𝑥,𝑗−2𝑤𝑖,𝑗+𝑤𝑖−𝛥𝑥,𝑗

(𝛥𝑥)2        (Equation 7-1) 

 

𝜕2𝑤

𝜕𝑥𝜕𝑦
≈

𝑤𝑖+𝛥𝑥,𝑗+𝛥𝑦−𝑤𝑖−𝛥𝑥,𝑗+𝛥𝑦−𝑤𝑖+𝛥𝑥,𝑗−𝛥𝑦+𝑤𝑖−𝛥𝑥,𝑗−𝛥𝑦

4(𝛥𝑥)(𝛥𝑦)
     (Equation 7-2) 

 

𝜕2𝑤

𝜕𝑦2 ≈
𝑤𝑖,𝑗+𝛥𝑦−2𝑤𝑖,𝑗+𝑤𝑖,𝑗−𝛥𝑦

(𝛥𝑦)2         (Equation 7-3) 

 

𝜕3𝑤

𝜕𝑥3 ≈
𝑤𝑖+2𝛥𝑥,𝑦−2𝑤𝑖+𝛥𝑥,𝑗+2𝑤𝑖−𝛥𝑥,𝑗−𝑤𝑖−2𝛥𝑥,𝑗

2(𝛥𝑥)3       (Equation 7-4) 

 

𝜕3𝑤

𝜕𝑥𝜕𝑦2 ≈
𝑤𝑖+𝛥𝑥,𝑗+𝛥𝑦−2𝑤𝑖+𝛥𝑥,𝑗+𝑤𝑖+𝛥𝑥−𝛥𝑥,𝑗−𝛥𝑦

2(𝛥𝑥)(𝛥𝑦)2 +
−𝑤𝑖−𝛥𝑥,𝑗+𝛥𝑦+2𝑤𝑖−𝛥𝑥,𝑗−𝑤𝑖−𝛥𝑥,𝑗−𝛥𝑦

2(𝛥𝑦)(𝛥𝑥)2                 (Equation 7-5) 

 

𝜕3𝑤

𝜕𝑦𝜕𝑥2 ≈
𝑤𝑖+𝛥𝑥,𝑗+𝛥𝑦−2𝑤𝑖,𝑗+𝛥𝑦+𝑤𝑖+𝛥𝑥,𝑗−𝛥𝑦−𝑤𝑖−𝛥𝑥,𝑗+𝛥𝑦

2(𝛥𝑥)(𝛥𝑦)2 +
2𝑤𝑖,𝑗−𝛥𝑦−𝑤𝑖−𝛥𝑥,𝑗−𝛥𝑦

2(𝛥𝑥)(𝛥𝑦)2    (Equation 7-6) 

 

𝜕3𝑤

𝜕𝑦3 ≈
𝑤𝑖,𝑗+2𝛥𝑦−2𝑤𝑖,𝑗+𝛥𝑦+2𝑤𝑖,𝑗−𝛥𝑦−𝑤𝑖,𝑗−2𝛥𝑦

2(𝛥𝑦)3      (Equation 7-7) 

 

𝜕4𝑤

𝜕𝑥4 ≈
𝑤𝑖+2𝛥𝑥,𝑗−4𝑤𝑖+𝛥𝑥,𝑗+6𝑤𝑖,𝑗−4𝑤𝑖−𝛥𝑥,𝑗+𝑤𝑖−2𝛥𝑥,𝑗

(𝛥𝑥)4      (Equation 7-8) 

 

𝜕4𝑤

𝜕𝑦𝜕𝑥3 ≈
𝑤𝑖+2𝛥𝑥,𝑗+𝛥𝑦 − 𝑤𝑖+2𝛥𝑥,𝑗−𝛥𝑦 − 2𝑤𝑖+𝛥𝑥,𝑗+𝛥𝑦 + 2𝑤𝑖+𝛥𝑥,𝑗−2𝛥𝑦

4(𝛥𝑥)3(𝛥𝑦)
 

+
+2𝑤𝑖−𝛥𝑥,𝑗+𝛥𝑦−2𝑤𝑖−𝛥𝑥,𝑗−𝛥𝑦−𝑤𝑖−2𝛥𝑥,𝑗+𝛥𝑦+𝑤𝑖−2𝛥𝑥,𝑗−𝛥𝑦

4(𝛥𝑥)3(𝛥𝑦)
           (Equation 7-9) 

 

𝜕4𝑤

𝜕𝑦2𝜕𝑥2 ≈
𝑤𝑖+𝛥𝑥,𝑗+𝛥𝑦−2𝑤𝑖,𝑗+𝛥𝑦+𝑤𝑖−𝛥𝑥,𝑗+𝛥𝑦−2𝑤𝑖+𝛥𝑥,𝑗+4𝑤𝑖,𝑗

(𝛥𝑥)2(𝛥𝑦)2      

+
−2𝑤𝑖−𝛥𝑥,𝑗+𝑤𝑖+𝛥𝑥,𝑗−𝛥𝑦−2𝑤𝑖,𝑗−𝛥𝑦+𝑤𝑖−𝛥𝑥,𝑗−𝛥𝑦

(𝛥𝑥)2(𝛥𝑦)2      (Equation 7-10) 



 

 

 

 

 

 

 

𝜕4𝑤

𝜕𝑦3𝜕𝑥
≈

𝑤𝑖+𝛥𝑥,𝑗+2𝛥𝑦 − 2𝑤𝑖+𝛥𝑥,𝑗+𝛥𝑦 + 2𝑤𝑖+𝛥𝑥,𝑗−𝛥𝑦 − 𝑤𝑖+𝛥𝑥,𝑗−2𝛥𝑦

4(𝛥𝑦)3(𝛥𝑥)
 

+
−𝑤𝑖−𝛥𝑥,𝑗+2𝛥𝑦+2𝑤𝑖−𝛥𝑥,𝑗+𝛥𝑦−2𝑤𝑖−𝛥𝑥,𝑗−𝛥𝑦+𝑤𝑖−𝛥𝑥,𝑗−2𝛥𝑦

4(𝛥𝑥)3(𝛥𝑦)
                  (Equation 7-11) 

 

𝜕4𝑤

𝜕𝑦4 ≈
𝑤𝑖,𝑗+2𝛥𝑦−4𝑤𝑖,𝑗+𝛥𝑦+6𝑤𝑖,𝑗−4𝑤𝑖,𝑗−𝛥𝑦+𝑤𝑖,𝑗−2𝛥𝑦

(𝛥𝑦)4      (Equation 7-12)  

     

3.  Results 

 

With the use of the parameters presented in Sections 2.1- 2.6, the maximum deflection values of 24 

different symmetrically laminated quasi-isotropic rectangular plates under the effect of uniformly lateral 

load, were found using FDM and the software-based FEM are presented in Figures. 3-6 for simply 

supported and in Figures.7-10 for clamped boundary conditions. 

The effect of change in orientation angle and aspect ratio for simply supported condition is shown in 

Figures. 3-4, when the short edge of the plate is at y-axis. The results obtained are given in Figures. 5-

6., when the short edge of the plate is at x-axis. 

For the clamped cases, the effect of change in orientation angle and aspect ratio is shown in Figures. 7-

8, when the short edge of the plate is at y-axis. The results obtained are given in Figures. 9-10 when the 

short edge of plate is at x-axis. 

The maximum deflections for clamped conditions are lower than those for simply supported conditions 

as expected. 

It is seen that from the results at the simply supported boundary condition, the maximum deflection 

values of 24 different symmetrically laminated quasi-isotropic plates increase with the increase of the 

aspect ratio. It is also observed that in cases where the short edge of the plate is a or b, the maximum 

deflection values of the plates change (Figures. 3-6). The same tendency is also seen with the clamped 

boundary condition (Figures. 7-10). 

It can be noted that by considering the Figures.3-4 and Figures.7-8, which denote simply supported 

hinge and a clamped one, respectively, that the plates LT7 ([02/-452/452/902]s) and LT9 ([02/452/-

452/902]s) have the highest maximum deflection (for a/b=2), when the short edge “a” of the plate is 

selected. This construction coincides longitudinal structure system. 

It can be noted that by considering the Figures.5-6 and Figures.9-10, which denote simply supported 

hinge and clamped one, respectively, that the plates LT20 ([902/-452/452/02]s) and LT23 ([902/452/-

452/02]s)   have the highest maximum deflection (for b/a=2), when the short edge “b” of the plate is 

selected. This construction coincides with the transverse structure system. 

 



 

 

 

 

 

 

 
Figure 3. Maximum deflection of the quasi-isotropic plates in 24 types with simply supported hinge 

a/b= 1, 1.4, 2 – longitudinal structure system solved using FDM and FEM 

 

 
Figure 4. Maximum deflection of the quasi-isotropic plates in 24 types with simply supported hinge 

a/b= 1.2, 1.6, 1.8 – longitudinal structure system solved using FDM and FEM 

 

 



 

 

 

 

 

 

 
Figure 5. Maximum deflection of the quasi-isotropic plates in 24 types with simply supported hinge 

b/a= 1, 1.4, 2 – transversal structure system solved using FDM and FEM 

 

 
Figure 6. Maximum deflection of the quasi-isotropic plates in 24 types with simply supported hinge 

b/a= 1.2, 1.6, 1.8 – transversal structure system solved using FDM and FEM 

 



 

 

 

 

 

 

 
Figure 7. Maximum deflection of the quasi-isotropic plates in 24 types with clamped hinge 

 a/b= 1, 1.4, 2 – longitudinal structure system solved using FDM and FEM 

 

 
Figure 8. Maximum deflection of the quasi-isotropic plates in 24 types with clamped hinge 

 a/b= 1.2, 1.6, 1.8 – longitudinal structure system solved using FDM and FEM 

 

 

 



 

 

 

 

 

 

 
Figure 9. Maximum deflection of the quasi-isotropic plates in 24 types with clamped hinge 

b/a= 1, 1.4, 2 - transversal structure system solved using FDM and FEM  

 

 
Figure 10. Maximum deflection of the quasi-isotropic plates in 24 types with clamped hinge 

b/a= 1.2, 1.6, 1.8 - transversal structure system solved using FDM and FEM 

 

 

 



 

 

 

 

 

 

4.  Conclusions 

 

Static bending analysis of uniformly lateral loaded composite thin plates has been investigated for 

different boundary conditions as clamped and simply supported hinge and also for lamination types, 

aspect ratios (a/b, b/a). Calculations were performed based on the governing equations of Classical 

Lamination Plate Theory (CLPT) using Finite Difference Method (FDM). The obtained results 

compared with those of the software ANSYS based on the FEM received from the open literature were 

found close to each other. With this parametric study using the FDM, most suitable lamination types 

can be determined in preliminary design stage of a composite ship, where numerous design parameters 

such as sizes, boundary conditions, lamination types, aspect ratios, transversal or longitudinal structural 

systems etc., are considered. It may be concluded that the FDM is a suitable and fast method that can be 

applied with the aid of the MATLAB software used for creating a computer code in composite ship 

design. 
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