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Abstract. The algorithm of Ott, Grebogi and Yorke (OGY) is recognized for its efficiency in 

controlling chaotic dynamical systems, even if the system’s equations are not known and the 

input data are provided by measured time series in experimental settings. Recently, Santos and 

Graves (SG) proposed a simple method for estimating the chaos control parameters required by 

OGY algorithm and applied it to the logistic map. Using only two time series of 100 values, they 

obtained approximate results for the fixed point case within 2 % of the analytical ones. Although 

the outputs refer only to a particular case, their conclusion seems to be that the method works as 

well as in general. To check this statement, we performed a large amount of numerical 

simulations on different one – dimensional maps. With slight different nuances, our findings 

were the same so we only presented in the paper the logistic map case. We have noticed that the 

use of only two short time series implies high risks in a reasonable estimate of the location of the 

fixed points and of the two control parameters (especially of the second). For large enough 

number of time series (three or five sets of 400 values each, in the paper) the results provided by 

numerical simulation approximated the theoretical ones within the limit of a few percent at most. 

The role played by each method parameter, as the radius for a close encounter of the fixed point 

or the number of the series and their lengths, is also investigated. 

1.  Introduction 

A large number of physical and biological systems are well described by nonlinear discrete or 

continuous equations. Commonly, the behavior of these systems depends on one or more parameters 

having a well – defined significance (e.g. birth or death rates, temperature or pressure, etc.). As a 

consequence of mutations in the environment, the parameters can change radically, forcing the system 

to behave very differently from what is desired. Even for the systems modelled by one – dimensional 

difference equations, as for example logistic map, the spectrum of possible dynamical behaviors is large 

enough to include fixed points, limit cycle or chaos [1 – 4].   

In order to maintain a desired activity (e.g. a fixed point) a number of control mechanisms have been 

proposed, especially if the system is chaotic. The control mechanism of Ott, Grebogi and Yorke (OGY 

for short) is one of the most known and used [5, 6]. Its main idea is as follows: a chaotic attractor 

possesses a large number of unstable periodic orbits (UPOs) embedded within itself. By making small 

adjustments to an accessible system parameter when the system evolves in a small neighborhood of an 

UPO, this can be stabilized.   

Recently, Santos and Graves propose a simple algorithm to estimate the parameters required by OGY 

technique, based on a time series analysis [7]. They used only two sets of 100 iterates of the logistic map 

in order to approximate the control parameters for stabilizing the fixed point within 2% of their analytical 



 

 

 

 

 

 

values. Their results concerned only one particular case, which of course is insufficient to appreciate the 

effectiveness of the method. 

This paper aims to analyze more thoroughly the level of accuracy of the results provided by the above 

– mentioned algorithm. 
 

2.  Short description of the method 

Consider a system whose dynamics is governed by the one – dimensional chaotic map 
 

                                                         1,,,1  nRxrxfx nnn                                                                               (1) 
 

where Rr  is a parameter, and let 
*x  be an unstable fixed point of map (1) for the control parameter 

value 0r .  When the system evolves in the proximity of the fixed point, its dynamics is well 

approximated by the linearized map 
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By fixing the control parameter to the nominal value 0r , one has 
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If the trajectory starting from 0x  is close to the fixed point, then the difference n  between two 

successive iterates is small (due to slow dynamics of the map around *x ). One collects all the pairs 

 1, nn xx  for which  n , where 1  is the radius for a close encounter to be detected. Denoting 

by m  another variation which fulfills condition m , one gets 
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In a long enough time series there exist many close encounters, so an average value will be more 

appropriate for the fixed point’s approximation 
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with . denoting an arithmetic mean. The control parameter results from (4) 
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To estimate the other control parameter,  , the control value 0r  is slightly changed to 1r  and the 

equation (5) is used to get the new fixed point, 
*
1x . By doing this for many 1r  it was found that 
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The OGY method assumes a control strategy that satisfy the relation 
 

                                                                   *
0 xxrr nn                                                                   (8) 

 

where   is a constant whose value must be selected so the control goal is achieved. From (2) and (8) it 

results that 

                                                             **
1 xxxx nn                                                           (9) 

 

For    the system is direct toward the fixed point in just an iteration. 
 

3.  Numerical simulations 

The algorithm described in the previous section was applied to different one-dimensional maps having 

biological significance. We discuss here the results obtained for the well-known logistic map only but 

the similar outputs were obtained for the malignant tumor growth map [3]. 

The logistic map is given by the difference equation 
 

                                                        0,1,1  nxxrrxfx nnnn                                                   (10) 
 

where  4,0r  is a real parameter and  1,0nx  denotes the ith iterate of the map [2]. Figure 1 presents 

the bifurcation diagram and the Lyapunov exponent for  4,5.2r . 
 

      
 

Figure 1. The bifurcation diagram of the logistic map for  4,5.2r  (left) and the corresponding Lyapunov 

exponent (right) 

 

It results from (10) that 
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proving the method’s accuracy. By using only two sets of 100 points each (meaning 99,...,2,1,0n ) 

and 1.0,91.3,9.3 10  rr  (none value for the initial point 0x  was reported) they founded the 

results presented in Table 1. 

At first sight, it seems that this simple method is quite accurate. To check this statement we performed 

a number of simulations with different parameters’ values. Thus, the first 100 iterates of map (10) for 

7.30r  and 74.00x  are displayed in Figure 2. Not less than K = 25 close encounters of the fixed 

point 72973.0*x  were detected. 
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Table 1: The results reported by Santos and Graves for the logistic map [7] 
 

 

Parameter *x        

Theory 0.74359 - 1.90 0.1907 9.97 

Simulation 0.74347 - 1.86 0.1892 9.85 

Error 0.016 % 2.1 % 0.79 % 1.2 % 
 
 

 
 

Figure 2. The first 100 iterates of the logistic map with 7.30r  and 74.00x . The red dots stand for the close 

encounters of the fixed point 72973.0*x   
 

This situation changes with the starting point 0x  and with parameter r. Thereby, Figure 3 shows the 

variation of the number K of the close encounters of the fixed point with 0x  for 7.30r  and 9.30r . 

The corresponding Lyapunov exponents are 3531.01  and 4932.02 . The left panel corresponds 

to a time series of length N = 100 while the right panel presents the same information for N = 200. It is 

useful to note that for 9.30r  (just in the middle of the chaotic area) there are values 0x  for which the 

trajectories stay away from the fixed point (meaning K is zero or very small). For these 0x  and 0r  the 

method does not work or the errors for parameters  ,,*x  and   are large. 
 

 

 
 

Figure 3. The number K of the close encounters of the fixed point as a function of the starting point x(0) for 

 r = 3.7 and r = 3.9. The time series length was N = 100 (left) or N = 200 (right) 
 

    The position of the fixed point 
*x can be approximated by equation (5). Figures 4 to 6 reports our 
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    For a short time series (N = 100) the errors are less than 0.015 % if r = 3.7, but they increase to 0.18 

% for certain initial points in the case r = 3.9. Moreover, the noticeable gaps in the graphical 

representation show the lack of neighbors for the fixed point. Increasing the time series length the errors 

in the fixed point location become extremely small and the above mentioned gaps disappear (especially 

for N = 400).  
 

 

Figure 4. The fixed point 
*x and its relative error 

*
relx   as a function of the starting point x(0) for 

 r = 3.7 and r = 3.9. The time series length was N = 100.  The red dashed lines indicate the theoretical values 

72973.0* thx   (for r = 3.7), respectively 74359.0* thx  (for r = 3.9) 
 

 
 

Figure 5. The same as in Figure 4 but for N = 200 
 

 
 

Figure 6. The same as in Figure 4 but for N = 400 
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The qualitative conclusions outlined above for the fixed point can be maintained for the control 

parameter  , as shown in Figures 7 to 9. For N = 100, the relative error %100



th

thsim
rel




  is 

at most 1 – 2 percentages for r = 3.7 but it can increase to 10 – 20 percentages for r = 3.9 (in those cases 

where the equation (6) can be applied).  

The situation changes in a favorable manner by increasing the number of iterations N, the same error 

being reduced to the maximum 0.5% for r = 3.7 and 2 % for r = 3.9. 
 

 
 

Figure 7. The control parameter   and its relative error rel   as a function of the starting point x(0) for 

 r = 3.7 and r = 3.9. The time series length was N = 100.  The red dashed lines indicate the theoretical values 

7.1th   (for r = 3.7), respectively 9.1th  (for r = 3.9) 
 

 
Figure 8. The same as in Figure 7 but for N = 200 

 

 
Figure 9. The same as in Figure 7 but for N = 400 
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The other control parameter,  , was estimated from equation (7) using 71.31r , respectively 

91.31r . If N = 100, for most initial points 0x   the relative error %100

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th

thsim
rel




  was 

found to be unacceptable high, as reported in Figures 10 to 12. Just by increasing the number of iterates 

to 400 the error rel  decreased to maximum 25%. This observation can be explained by the fact no 

more values 1r  have been used.  

 
 

Figure 10. The control parameter   and its relative error rel   as a function of the starting point x(0) for 

 r = 3.7 and r = 3.9. The time series length was N = 100.  The red dashed lines indicate the theoretical values 

1972.0th   (for r = 3.7), respectively 1907.0th  (for r = 3.9) 
 

 
Figure 11. The same as in Figure 10 but for N = 200 

 

 
Figure 12. The same as in Figure 10 but for N = 400 
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The consequence of obtaining a numerical value away from the theoretical one was reflected in the 

 value, as illustrated in Figure 13. To improve the value of   we could try either to change the radius 

  for a close encounter or to increase the number of 1r  values in equation (7). 
 

 
 

Figure 13. The control parameter   as a function of the starting point x(0) for r = 3.7 and r = 3.9. The time 

series length was N = 100 (left), N = 200 (middle) or N =   400 (right).  The red dashed lines indicate the 

theoretical values 62.8th   (for r = 3.7), respectively 97.9th  (for r = 3.9) 
 

The effect of changing  is not clear at all. Reducing the radius   will immediately result in a lower 

K value, with the possibility that the method becomes inapplicable even for large time series. Increasing 

the radius will result in the loss of close encounter’s significance. We tried three variants, namely 

 2.0,1.0,05.0 . For r = 3.7 the best results were obtained for 05.0  , while for r = 3.9 a radius of 

0.1 produced the same effect (see Figures 14 and 15).  
     

 
 

Figure 14. The relative error rel   as a function of the starting point x(0) for  r = 3.7 and r = 3.9. The time 

series length was N = 400.  The radius for a close encounter was chosen to be 05.0  (left), 1.0  (middle) 

or 2.0  (right) 
 

 
 

Figure 15. The control parameter   as a function of the starting point x(0) for  r = 3.7 and r = 3.9. The time 

series length was N = 400.  The radius for a close encounter was chosen to be 05.0  (left), 1.0  (middle) 

or 2.0  (right) 
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    Finally, increasing the number of values 1r  leads to a value sim much closer to its theoretical 

counterpart, as shown in Figure 16. 
 

 
 

Figure 16. The control parameter   as a function of the starting point x(0) for  r = 3.7 and r = 3.9. The time 

series length was N = 400. The number of 1r  values were one (left), three (middle) or five (right) 
 

4.   Conclusions 

The paper investigates numerically the capacity of an algorithm recently proposed by Santos and Graves 

to accurately estimate from a time series the chaos control parameters required by OGY method. The 

algorithm was tested on the case of logistic map and the aim was to stabilize the fixed point. Although 

not presented in the paper, similar results have been found for other one-dimensional maps. 

The main conclusions of the study are as follows: 

a) The algorithm can be applied only if a reasonable number of close encounters of the fixed point 

exists. In the middle of the heavily chaotic region ( r = 3.9), there are many initial conditions for which 

the system evolves away from the fixed point, at least for a short time series. If parameter r is chosen 

closer to the beginning of the chaos (for example, r = 3.7) then, regardless of the starting condition, in 

the vicinity of the fixed point will be found enough close encounters; 

b) The fixed point was estimated with sufficient accuracy for both r values. For short time series (100 

values) the relative errors do not exceed 0.015% for r = 3.7 and 0.18% for r = 3.9. In the second case, 

the algorithm did not work for about 10% of the starting points. This shortcoming disappeared with the 

increase of the time series length. For N = 400, the fixed point was estimated with extremely high 

precision; 

c) The previous conclusion can be broadly maintained for the first control parameter,  . For short 

time series the relative errors are at most 1 – 2 % for r = 3.7 and 10 % for r = 3.9, but falls below 0.5 % 

if r = 3.7 or 2 % if r = 3.9 for a larger data set; 

d) In the variant used by the authors, larger errors occur in estimating the second control parameter, 

 . The explanation lies in the fact that only one term was used to obtain the mean value in equation 

(7). Averaging over three or five values, the errors have dropped significantly, especially for large time 

series (e.g. N = 400). 

As a final conclusion, using just two small time series involves assuming a high risk in estimating 

the fixed point and the control parameters for the OGY method. It is just a matter of luck in choosing 

the starting point if the algorithm will work or if the errors will be acceptable or not. 

The algorithm can be adapted for estimating the periodic UPOs of multi-dimensional maps. 
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