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Abstract. The power analysis of the entire three-phase electrical system provides brief 

indications due to the compensation between the phases of the system of active and reactive 

powers. Only analysis of the electrical phases characteristics (currents, voltages, powers) of the 

three-phase system has theoretical and practical particular importance for balancing systems as 

well as analyzing the currents and powers that load the phases of the system. Akagi's 

"imaginary reactive power" method offers low efficiency and is polluting, introducing three 

order parasitic harmonics (compensating currents containing only half of the currents to be 

compensated) for three-phase unsymmetrical systems. 

1.  Compensation with reactive element 

The classical method of simmering the unbalanced currents in the case of a pure resistive receiver 

connected to the line voltage (Figure 1(a)) is known for compensating the inverse current by means of 

a capacitor and a coil connected to form a connection in triangle with resistor. 

 

 
 

Figure 1 Example of decomposition of unbalanced scheme 

 

The unbalanced scheme (Figure 1(a)) consists of an equivalent scheme (Figure 1(b)) 

consisting of three sides having equal conductances (G / 3) that the active power is identical to the one 

in the unbalanced scheme and an unbalanced receive scheme with zero total power and symmetrical 



 

 

 

 

 

 

inverted currents (Figure 1 (c)). The phase and line voltages of the three schemes are identical so that 

overlapping of currents, conductances and powers is simultaneous. Out of obvious relationships 

21 aaaba IIUGI              (1) 

with  aa VGI    because the  equivalent star scheme has the side conductance   GG 33  results  
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2            (2) 

 

 
Figure 2 Compensation of the inverse current components  

 

Figure 2(a) shows the currents: 

 21 aaa III           

These relationships also result from the equivalent schemes in Figure 1(b) and 1(c). 
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The reactive element diagram in Figure 2(b) performs the compensation of the inverse 

current components in Figure 1(c). In reality 
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The general imbalance characterized by different conductances Gab, Gbc, Gca  is solved by 

highlighting a balanced scheme associated with direct and other unbalanced currents associated with 

inverse currents (Figure 3 (a), (b), (c)). 



 

 

 

 

 

 

 
a)                                            b)                                                c) 

 
  d) 

 

Fig. 3 Scheme associated with direct and other unbalanced currents associated with inverse currents 
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result 

 mcacambcbcmabab GGGGGGGGG  ,,    (6) 

 The inverse current 2aI  has the following expression 
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For the equivalent reactive scheme with susceptance necessary to compensate inverse 

currents (Figure 3 (d)),  it is necessary 
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Due to the relationship 0 cabcab GGG we will use in the following relations only 

two independent sizes 

 abGG   and G
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Result    GGca  1 . 

The equivalent schemes associated with the reversed current components are those shown in Figure 4. 

 
(a)                                                             (b) 

 

Fig. 4 The equivalent schemes associated with the reversed current components 
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Figure 4 (b) contains the reactive elements necessary for balancing (compensation of the 

inverse components of the currents). Experimental determination of ΔG and α parameters results from 

measurements of powers. 
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have 
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Or 
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and 

  22 13 acba GVSSS       

From the expressions of power results the two parameters ΔG and α, characteristics of the 

imbalance 
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Since the power measurements are made for the phases of the entire three-phase system of 

Pa, Pb, Pc and P = Pa + Pb + Pc, it is calculated 
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With this, the two parameters ΔG and α are obtained.  

If ΔG is the largest deviation from the medium value G  

m, parameter α is the range of variation between 0 and 1 (0 <α <1). According to the expression of the 

complex representation of the inverse current, the geometric place (for α variable), its hodograph for 

the three phases is the sides of an isosceles triangle as represented in Figure 5. 

 
Figure 5 

With the values of the measured powers and then of the parameters ΔG and α calculated, the 

values of the senses necessary for balancing the currents (reactive compensation of the inverse residual 



 

 

 

 

 

 

currents) are obtained (Figure 4(b)). Consequently, only the analysis of the parameters (currents, 

voltages, powers) characteristic of the three-phase system has theoretical and practical importance for 

balancing unbalanced systems as well as analyzing the currents and powers that load the phases of the 

system. The power analysis of the entire three-phase system provides brief, practically inefficient 

indications due to the compensation between the phases of the system of active and reactive phase 

powers. 

 

 

 

2.   Electronic Compensation of "Instantaneous Reactive Power  

 

The concept of measurable reactive power for three-phase systems introduced by Iliovici since 1925 

and accepted by C Budeanu only for the purpose of measuring reactive power, was resumed and 

expanded as meaning and use by H  Akagi under the name "original instant power" or "instantaneous 

imaginary power". Although the method of compensating reactive components of symmetrical 

currents is efficient and  useful in three-phase systems with symmetrical voltages for non-symmetric 

systems, it is questionable. 

Initially, the author of the method used a biphasic component system. Subsequently, many 

authors used expressions with representative spatio-temporal vectors (Park vectors) to generalize the 

expression of powers of three-phase systems including imaginary reactive power without accentuating 

the limits of physical and technical validity of the obtained expressions. In a previous paper, the 

physical significance and prime technical utility of "instantaneous reactive power" was analyzed to 

compensate for symmetrical reactive currents. For non-symmetrical (inverse) currents, "instantaneous 

reactive" power compensation has low efficiency and is polluting (introduces third-order harmonics). 

For unbalance voltage, the pollutant effect is increased and compensation is not physically and 

technically possible. 

In the following, unmanned voltages and current components are used to highlight the physical and 

technical limits of compensating symmetrical reactive currents and then compensating reverse 

inversion currents associated with unbalanced operation of the symmetrical voltage system. 

 

2.1.  Theory and technique of compensating symmetrical reactive currents 

 

Compensation of symmetric reactive currents can be done economically instantly without the need for 

"imaginary reactive power".  

For a symmetrical voltage system 
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and symmetrical currents decomposed into active and reactive components 
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it is the question of compensation of the reactive components of the currents 
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The total instantaneous power of the system associated with the reactive components of the 

symmetrical currents results in zero because the oscillating instantaneous powers of the symmetrical 

systems are self-compensated. 
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 Therefore, if it is injected compensating current with the power electronics components 
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device will not consume total instantaneous power . 0 ppc  

Akagi, starting from the expressions of active and total reactive powers (here in uncharted 

components, known as function of voltages (18) and current (19)) 
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result by inversion the currents as functions of total powers 
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with  
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 Obtein symmetrical reactive current components, identical to those previously expressed, 

are obtained in (20) 
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Consequently, the total reactive power q was used only to obtain reactive components of 

the offset currents. These can also be obtained by subtracting the active components from the total. 

The active components result from active instantaneous power, avoiding the use of reactive power 

(with erroneous results for non-symmetrical currents). 

 

2.2.  Compensation of non-symmetrical (reverse sequence) 
 

In case of a purely unbalanced receiver, supply from a three-phase symmetric voltage system, only the 

components of the reverse sequence currents must be compensated. The "imaginary reactive power" 

method offers low efficiency and is polluting by introducing "three parasitic" harmonics.  

 With direct symmetrical tensions 



 

 

 

 

 

 

 

 tUutUu   cos2sin2 11      (28) 

and inverse  symmetric currents 
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compensatory currents  iandi q obtained by the Akagi method,  
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contain only half of the currents  iandi which have to be compensated and  appear in plus 

additional pollutants three harmonic. 

2.3.  Compensation of currents in non-symmetrical voltage systems 

 With 
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result  the determinant of  matrix tension as pulsating function 
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and in the particular case U1=U2, Δ is an oscillating function (it is canceled periodically) so that the 

compensation is not physically feasible. 

 

3.  Conclusions  

 

Only analysis of the electrical phases characteristics (currents, voltages, powers) of the three-phase 

system has theoretical and practical particular importance for balancing systems as well as analyzing 

the currents and powers that load the phases of the system.  

          Power analysis of the entire three-phase system provides brief, practically inefficient indications 

due to the compensation between the phases of the system of active and reactive phase powers. 

         Akagi's "imaginary reactive power" method offers low efficiency and is polluting, introducing 

three order parasitic harmonics (compensating currents containing only half of the currents to be 

compensated) for three-phase unsymmetrical systems. 
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