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Consideration regarding tensions in a contact 

S S Ghimisi1 
1 Constantin Brancusi University of Targu Jiu, Romania 
 
Abstract. The paper presents the existent tension at the contact level: sphere-plane. In the same 
time we describe the dependence of these tension by different factors of influence. The obtained 
relations are without dimension and in this way we can analyse better the punctual contact. For 
this we have made a dimensionalization of the relations used in specialized literature, and based 
on these, we deduced the dependencies of the tensions of the various influence factors of the 
contact     

1.Introduction 
The tension analysis in this paper takes into account a spherical-plan contact. For this we have made a 
dimensionalization of the relations used in specialized literature, and based on these, we deduced the 
dependencies of the tensions of the various influence factors of the contact. 

In the study of contact we started from the quasi-static tension field determination by summing two 
determinations from the field of equations of the linear elasticity equation considering the limit 
conditions in the z = 0 plane of the semis pace z> 0 (The Hamilton Theory): 

( )( ) arraaPppp xzzzyz <−−=== ,2/3;0 2/1223πµ  (1) 

( )( ) arraaPppp zzxzyz <−−=== ,2/3;0 2/1223π  (2) 
All tractions at z = 0 are canceled for r> a and all tensions quickly become zero when points move 

away from the origin. 

( ) 1222 −
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In the (1) and (2) relations, ( ) 2/122 yxr += , a-represents the radius of the loading region,  P- the total 
normal load and μP is the total tangential force in the x-direction. 

All these are necessary for determining the stresses field and writing for the state of the stresses given 
by the application of a point-like force (solutions of the Boussinesq and Cerutti semis) [1, 2] by 
integrating over the entire plane z = 0, considering the boundary conditions (1) and (2). 

This approach leads to a series of integrals hard to solve. However, this analysis can be approached 
by extending the tangential loaded semi space , a method introduced by A.E.Green for the analysis of 
voltages of a normally loaded semi space. [3,4,5,6]. 

As a result of this expansion, the cartesian components of the movements u, v, w depend on the 
harmonic voltage T (x, y, z): 

( ) ( ) ( )zxTzzTxTu δδδδδδδνµ 232222 //2/22 −+= (3.a) 

( ) ( )zyxTzyxTv δδδδδδδνµ //22 32 −=        (3.b) 

( )( ) ( )232 //212 zxTzzxTw δδδδδδνµ −−=    (3.c) 



 
 
 
 
 
 

 µ - represents the coefficient of friction, considered constant. 
ν - Poisson's coefficient 

The field of equations from the linear theory of elasticity and the two limit conditions (1) and (2) are 
automatically satisfied. 
Taking T as an imaginary part of the complex harmonic function: 

( ) ( )∫








+−+





 −

a

drzRRzrzt
0

2
1111

22
1 4

1
4
3ln

2
1

2
1 ξξ    (4) 

where: ξizz +=1 and ( ) 2/122
11 rzR += ;   

the plane z = 0 is automatically released by traction for r> a. 
It remains to be shown that t (ξ) satisfies the last limit condition (1). 
At z = 0, for r <a, equations (3) and (4) involve: 
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So: 
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For xzp  giving fot the third condition  (1), ( ) ( )ξπµξ 32/3 aPt −=  

2. The field of tensions for a plan sphere contact 
The determination of the field of voltages is thus done by an elementary quadrature following (3) and 
(4) [7,8]. 
Thus, by writing iazz +=2 and 

( ) 2/122
22 rzR +=   tension components are conventionally expressed in terms of the imaginary part of 

complex functions: 
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The Cartesian components of the tension field generated by (1) have the imaginary parts: 
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Along the axis z the tension component is: 
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On the surface, inside the contact area, z = 0 and r <a, the voltage component will be: 
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and outside of the contact area: 
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Inside, respectively, outside the charged surface, the adimensioned pressure relationships can be 
written as follows: 
- For the inside of the loaded surface (z = 0, r <1) of relations (3.10) taking into account the condition 
(1) results:  
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8
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with: ( ) 2/122 xry −=  
The graphical representation of these pressures is given in figure1, figure 2 and figure 3 for 

 a coefficient of friction µ = 0.6. [9] 



 
 
 
 
 
 

It can be observed that the pressure xxp   has the highest values; respectively a restricted area 
distribution for pressure xyp  

For a coefficient of friction µ = 0.8[10] the pressure representations within the loaded surface are 
given in figure 4, figure 5, figure 6. 

                             
Figure 1.Dependence of pressure ( )µ,, jiyy rxp                Figure 2. Dependence of pressure xxp ( )µ,, ji rx      

  ( ixi 1.00 += , jrj 1.00 += ,i=0..30,j=1..9)                 ( ixi 1.00+= , jrj 1.00+= ,i=0..30,j=1..9)                      
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Figure 3. Dependence of pressure xyp ( )µ,, ji rx              Figure 4. Dependence of pressure ( )µ,, jiyy rxp   

   ( ixi 1.00+= , jrj 1.00+= ,i=0..30,j=1..9)                  ( ixi 1.00+= , jrj 1.00+= ,i=0..30,j=1..9)  
For the zone from the outside loaded surface (z = 0, r> 1) of the relations (11) and taking into account 

the condition (1), it results: 
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Figure 5. Dependence of pressure xxp ( )µ,, ji rx           Figure 6. Dependence of pressure xyp ( )µ,, ji rx  

  ( ixi 1.00+= , jrj 1.00+= ,i=0..30,j=1..9)                  ( ixi 1.00+= , jrj 1.00+= ,i=0..30,j=1..9)   
 
The graphical representation of these pressures is given in figure 7, figure 8, figure 9 for a coefficient 

of friction µ= 0.6. Note that pressures in the outside zone of the loaded area are higher than the pressure
xxep . 
For a coefficient of friction µ = 0,8 the pressure representations in the outside area of the loaded 

surface are given in figure 10, figure 11, figure 12. 
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 Figure 7. Dependence of pressure xxep ( )µ,, ji rx     Figure 8. Dependence of pressure yyep ( )µ,, ji rx  

   ( ixi 1.00+= , jrj 1.01+= ,i=0..30,j=1..10)                ( ixi 1.00+= , jrj 1.01+= ,i=0..30,j=1..10)            
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Figure 9. Dependence of pressure xyep ( )µ,, ji rx         Figure 10. Dependence of pressure xxep ( )µ,, ji rx  

 ( ixi 1.00+= , jrj 1.01+= ,i=0..30,j=1..10                   ( ixi 1.00+= , jrj 1.01+= ,i=0..30,j=1..10)                        
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Figure 11. Dependence of pressure yyep ( )µ,, ji rx         Figure12.Dependence of pressure xyep ( )µ,, ji rx  

    ( ixi 1.00+= , jrj 1.01+= ,i=0..30,j=1..10)             ( ixi 1.00+= , jrj 1.01+= ,i=0..30,j=1..10)    
                        
4.Conclusions 
Determination of the stresses inside and outside the loaded surface allows for an adequate analysis of 
the contacts with a plan plane taking into account a coefficient of friction between surfaces. 

The analysis allows the representation and determination of pressures for the considered contact.  
The field of tension created for a sliding circular contact can be related to material fracture issues. 

Quantitatively showing interest in the position of pressures, in order to be able to establish criteria to 
predict the cracking and deterioration of such contacts. 
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