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Abstract. The helical compression spring is calculated in the STAS 7067 standard based on the 

wire twist tension and considering the type of deformation, fatigue loading and vibration and 
buckling effect. 

To avoid recalculation of the values of already calculated parameters, the proposed calculation 

method uses the same formulas from STAS, but sets out a set of restrictions that must be observed 

in the design stages. 

To optimize design, start with material selection, set minimum and maximum forces, also the 

type of deformation as well as the admissible dimensions. 

1.  Introduction 

The springs are machine parts to realise an elastic link between certain parts or subassemblies inside a 

machine. Through their special shape and special manufacturing materials, the springs have the capacity 

to deform under an external applied force and storing the work developed by force inside. Once the 
force cease to act upon the spring the stored work can be released back to the mechanical system. 

The springs may be used in various applications, the most significant are: 

 Damping the shocks and vibrations (car suspensions, elastic clutches) 
 Storing the mechanical energy (mechanical clocks, valves etc.), 

 Exerting a permanent elastic force (safety coupling, friction clutches etc.), 

 Regulating and limiting forces inside the systems (air presses safety valves etc.). 

 
The elastic load-displacement diagram for a spring is defined by the dependency of the exerted 

external force/torque to the elastic displacement/twist of the spring. 

Generally in STAS are presented computational formulas but it is not specified how they are used. 
STAS 7067 provides the formulas for compression springs. Some calculations are required to determine 

some parameters.  

This paper proposes that by imposing some major restrictions and by a series of approximations, the 
calculation method should be improved in order to avoid recalculating some already calculated 

parameters. 

2.  Introductory elements 

The helical compression spring is calculated in the STAS 7067 standard based on the wire twist tension 
and considering the type of deformation, fatigue loading and vibration and buckling effect. 

To avoid recalculation of the values of already calculated parameters, the proposed calculation 

method uses the same formulas from STAS, but sets out a set of restrictions that must be observed in 
the design stages. 



 

 
 

 

 

 

Figure 1 presents the most important characteristics of the compression helical springs (from the 

STAS) 
 

 

Figure 1 
 

 𝒅 – diameter of spring wire 

𝑑 = √
8∙𝑘∙𝐹∙𝑖

𝜋∙𝜏𝑎
                                                                         (1) 

 
where 

𝑖 – is the spring index     

𝑖 =
𝐷𝑚

𝐷
  

𝑘 – is the form coefficient of the spring (stress factor or Wahl stress factor) 

𝑘 = 1 +
1,6

𝑖
 

𝜏𝑎 – is the allowance tension for the torsional stress 

 

 𝒇 – deflection of the spring, as a result of axial load F 

 

𝑓 = 8 ∙ 𝐹 ∙
𝐷𝑚

3

𝐺∙𝑑4 ∙ 𝑛 = 8 ∙ 𝐹 ∙
𝑖3∙𝑛

𝐺∙𝑑
                                                    (2) 

 

where 

𝑛 – is the number of active coils     
𝐺 – is shear modulus of rigidity for the spring material 

𝐷𝑚 – is the mean diameter of the coil 
 

 𝑯𝟎 – free length of the spring 

 

𝐻0 = 𝑡 ∙ 𝑛 + (𝑛𝑟 − 0,5) ∙ 𝑑 – for plain and ground ends 

𝐻0 = 𝑡 ∙ 𝑛 + (𝑛𝑟 + 1) ∙ 𝑑   – for squared and ground ends                             (3) 



 

 
 

 

 

 

where 

𝑡 – is the pitch of the coils     

 

 𝑯 = 𝑪 – the spring rate or stiffness of the spring 

 

𝐶 = 𝐾 =
𝐹

𝑓
=

𝐺∙𝑑4

8∙𝐷𝑚
3 ∙ 𝑛 =

𝐺∙𝑑

8∙𝑖3 ∙ 𝑛                                                  (4) 

 

 𝑬 – energy stored in the spring 

 

𝐸 =
1

2
∙ 𝐹 ∙ 𝑓                                                                             (5) 

 
The buckling of the compression helical spring is verified using Figure 2 (from STAS); the buckling 

don’t appear if the point having 𝒂 and λ coordinates is below the curves 1 and 2 in diagram. 

 

 
Figure 2 

where 

𝑎 – is the arcing coefficient     

𝑎 =
𝑓

𝐻0
 

𝜆 – is buckling factor 

𝜆 =
𝐻0

𝐷𝑚
 

 

The Standard (STAS) don’t presents a method of design but consider that the steps of calculations 

depends on problem data. 

3.  Consideration on STAS application 

 The spring index 𝒊 is selected in the start of the calculation, but this selection depends on the 𝒅  

(diameter of the wire), which is not known at the start 

 The constant 𝑲 (for the calculation on 𝒅 ) depends on 𝒊 value, that is arbitraiy selected 

 The wire diameter 𝒅 depends on 𝝉𝒂 and 𝒊 (which is arbitraiy selected) and 𝑲 (depending on 𝒊) 

 The value of spring rate 𝑪 depends on 𝑫𝒎 (which is based on disponible space) and 𝒏 (which 

is unknown) 

 If the buckling is produced, we need to modify  𝒂 and λ , i.e. to modify the values just calculated 

 



 

 
 

 

 

 

                                      
 

Figure 3     Figure 4 

 

 

4.  Optimizing springs 

4.1.  Stress of the spring wire 

The basic stress in a helical springs, based on Figure 3, are: 

 𝝈𝒕 – tensile  stress, produced by force 𝑁 = 𝐹 ∙ 𝑠𝑖𝑛𝛼 

 𝝈𝒊 – bending stress, produced by bending moment 𝑀𝑖 = 𝐹 ∙ 𝑅 ∙ 𝑠𝑖𝑛𝛼 

 𝝉𝒇 – shear  stress, produced by the force 𝑇 = 𝐹 ∙ 𝑐𝑜𝑠𝛼 

 𝝉𝒕; 𝝉𝒓 – torsional stress, produced by the torque 𝑇 = 𝐹 ∙ 𝑅 ∙ 𝑐𝑜𝑠𝛼  

 
Equivalent tension, based on the 3 rd theory of the failure is: 

 

𝜎𝑒𝑐ℎ = √(𝜎𝑡 + 𝜎𝑖)2 + 4 ∙ (𝜏𝑓 + 𝜏𝑟)
2

= 

 
 

= √(
𝑁

𝐴
+

𝑀𝑖

𝑊𝑧
)

2

+ 4 ∙ (
4∙𝑇

3∙𝐴
+

𝑀𝑡

𝑊𝑝
)

2

                                           (6) 

and,  

𝐴 =
𝜋∙𝑑2

4
= 𝜋 ∙ 𝑟2                                              (7) 

 

𝑊𝑧 =
𝜋∙𝑑3

32
=

𝜋∙𝑟3

4
                                                (8) 

 

𝑊𝑝 =
𝜋∙𝑑3

16
=

𝜋∙𝑟3

2
                                               (9) 

 
 

 



 

 
 

 

 

 

And if we substituting the values of  𝑁, 𝑇,  𝑀𝑖 , 𝑀𝑡 , 𝐴, 𝑊𝑧, 𝑊𝑝, results: 

 

                                       𝜎𝑒𝑐ℎ = √(
𝐹𝑠𝑖𝑛𝛼

𝜋𝑟3
+

4𝐹𝑅𝑠𝑖𝑛𝛼

𝜋𝑟3
)

2

+ 4 (
4𝐹𝑐𝑜𝑠𝛼

3𝜋𝑟3
+

2𝐹𝑅𝑐𝑜𝑠𝛼

𝜋𝑟3
)

2

 

 

𝜎𝑒𝑐ℎ =
𝐹

𝜋∙𝑟2
√𝑠𝑖𝑛2𝛼(1 + 4𝑖)2 + 4𝑐𝑜𝑠2𝛼(1,33 + 2𝑖)2                             (10) 

 

If we consider that  𝑐𝑜𝑠2𝛼 = 1 − 𝑠𝑖𝑛2𝛼 and transform relation (10), neglecting the terms containing 

𝑠𝑖𝑛2𝛼 , we may approximate: 
 

𝜎𝑒𝑐ℎ ≈
8𝐹(1,33+2𝑖)

𝜋𝑑2 ≤ 𝜎𝑎                                                       (11) 

 

And, based on the equivalence 

𝜏𝑒𝑐ℎ ≈ 0,75𝜎𝑒𝑐ℎ = 0,75
8𝐹(1,33+2𝑖)

𝜋𝑑2 ≤ 𝜏𝑎                                    (12) 

And denominate 

𝜌 =
𝑑

𝐷𝑎
 

 

Where, 

𝐷𝑎 – the diameter of guidance axis 
 

We obtain a restriction condition 

𝑖 + 0,665 + 0,196
𝐷𝑎

2∙𝜎𝑎

𝐹
∙ 𝜌2 ≤ 0                                     (13) 

 

Considering 𝐹 = 𝐹𝑀  maximum value of axial load 

From the transformations of relations, 0,196 is the value of 
𝜋

16
 and 0,665 is 

1,33

2
 

For the 𝜎𝑎 values, is possible to use the approximate value 

 

𝜎𝑎 =
1,3∙𝜎

3−𝑅𝑆
                                                                      (14) 

 
 

where 

𝑅𝑆 =
𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥
 is the coefficient of varying force 

 

4.2.  The spring stiffness 

The spring stiffness is directly influenced by the free length of the arc 𝐻0 and the effective length 𝐻 

produced by the force 𝐹𝑚𝑎𝑥  (Fig. 3 and 4) and is determined by equations 2 and 4. 

If 𝑓𝑚 is the deflection produced by the maximum force 𝐹𝑚 , the following conditions must be met: 

 
𝐻0 − 𝑓𝑚 ≤ 𝐻 

𝐻0 − 𝑓𝑀 ≥ 𝑛 ∙ 𝑑                                                               (15) 
 

𝑛 ≤ 𝑛0 =
𝐺∙𝐻∙𝑑

8(𝐹𝑀−𝐹𝑚)∙𝑖3+𝐺∙𝑑2                                                  (16) 

 



 

 
 

 

 

 

where, 

𝑛0 – Is the number of coils, corresponding to (𝐹𝑀 − 𝐹𝑚) force 
  

If it is imposed a value of deflection = 𝑓𝑀 − 𝑓𝑚  , the conditions are: 
 

 
𝑛 ∙ 𝑑 + 𝑓 ≤ 𝐻 

𝑛 ≤ 𝑛0 =
(𝐻−𝑓)

𝑑
                                                              (17) 

 

If the spring must store an imposed amount of energy 𝐸, 
 

𝐸 =
(𝐹𝑀−𝐹𝑚)(𝑓𝑀−𝑓𝑚)

2
                                                       (18) 

 
 

𝑐0(𝑓𝑀
2 − 𝑓𝑚

2) = 2𝐸 

  =>  𝑐0 =
2𝐸

(𝑓𝑀
2 −𝑓𝑚

2 )
                                                            (19) 

 

𝑛 ≤ 𝑛0 =
𝐺∙𝑑

8∙𝑖3∙𝑐0
                                                            (20) 

 

4.3.  Dimensional restrictions 

If 𝐷𝑐 is the disponibile diameter to fit the spring and 𝛾 =
𝐷𝑐

𝐷𝑎
 

𝐷𝑚 + 𝑑 ≤ 𝐷𝑐 
𝑜𝑟 

𝑑 ∙ (𝑖 + 1) ≤ 𝐷𝑐                                                           (21) 
 

and results the condition 

𝑖 + 1 −
𝛾

𝜌
≤ 0                                                              (22) 

 
For the inner space 𝐷𝑎, the condition are 

 

𝐷𝑚 − 𝑑 ≥ 𝐷𝑎 
𝑜𝑟 

𝑑 ∙ (𝑖 − 1) ≥ 𝐷𝑎                                                             (23) 
 

and results the condition 

𝑖 − 1 −
1

𝜌
≤ 0                                                             (24) 

 

4.4.  Stability restrictions 

The value of 𝜆 from relation 𝜆 =
𝐻0

𝐷0
  must be lower then 𝜆𝑐𝑟 (critical value) 

 

𝜆 ≤ 𝜆𝑐𝑟 =
2,62

𝛽
                                                           (25) 

 

with 𝛽 - buckling factor, depending on the form of end connections of the spring and of the guidance 
form (spring located in the tube, or mounted on a central rod). 



 

 
 

 

 

 

 

It exists two cases: 
► Determine 

 

𝛽 =
2,62∙𝐷𝑚

𝐻0
                                                                 (26) 

 

and establish the need of the guidance and form of end connections. 
 

► If 𝛽 is imposed,  

=> 𝐻0 =
2,62 ∙ 𝐷𝑚

𝛽
 

and determine the number of active coil as 

𝑛 =
(

2,62∙𝐷𝑚
𝛽

−𝐻)∙𝐺∙𝑑

8∙𝐹𝑚∙𝑖3                                                         (27) 

 

4.5.   Other restrictions 

Based on manufacture technology of the spring, finally results 𝑖𝑚𝑖𝑛 > 5, to avoid supplementaiy 

tensions in the wire, in the manufacturing process. 

5.  Optimum design algoritm 

5.1.  Imposed data 

 The allowable dimensions: 𝐷𝑐 , 𝐷𝑎 , 𝐻 

 Minimum force 𝐹𝑚; maximum force 𝐹𝑀 

 Energy to be stored 𝐸 

 Minimum deflection 𝑓𝑚; maximum deflection 𝑓𝑀 

5.2.  The materials 
 

 STAS provide the characteristics of the steels for springs. 

 based on relation (14), we determine oa, with 𝑅𝑆 =
𝐹𝑚

𝐹𝑀
  

 we can select the material based on 𝜎𝑎, considering the costs of material and other 
economical criteria. 

5.3.  Undimensional coefficients 

► The A parameters, defined from relation (13) 

𝐴 = 0,196
𝐷𝑎

2∙𝜎𝑎

𝐹𝑚
                                                                 (28) 

 

And resulting from relation (28) 

 

𝑖 = 𝜆 ∙ 𝜌2 − 0,665         (29) 

 
For the case of an imposed material, with known 𝜎𝑎 value 

►  If the material is not imposed, we can select him for another value of 𝜎𝑎 in calcuiation of A and 

imposing the conditions (22) and (13), resulting the approximate value 

 



 

 
 

 

 

 

𝜌 =
𝛾

𝑖 + 1
 

𝑖 =
𝐴∙𝛾2

(𝑖+1)2 − 0,665                                                  (30) 

and 

(𝑖 + 1)3 ≈ 𝐴 ∙ 𝛾2                                                     (31) 

 

► From relation (30) 
 

=> 𝐴 ∙ 𝛾2 = (𝑖 + 0,665) ∙ (𝑖 + 1)2                                       (32) 
 

Approximately 
 

         𝐴 ∙ 𝛾2 ≈ (𝑖 + 1)3 

        𝐴 = (𝑖 − 1)3 

𝑖 = √𝐴 ∙ 𝛾23
− 1                                                        (33) 

 

5.4.  The calculation steps 

 

  The compatibility of the problem results from 
 

√𝐴
3

≥ {
1,6

√𝛾2−1
3 ;

6

√𝛾23 }                                                       (34) 

 

 If the relation (34) is accomplished, 

 

𝑖 = √𝐴 ∙ 𝛾23
− 1                                                           (35) 

 

And from relation (30) results 𝜌 and from  𝜌 =
𝑑

𝐷𝑎
, results 𝑑 

 

 If relation (29) is accomplished, the case is of imposed material and results another value of 𝛾 

from relation (30) 

 

 If 𝑖 =
𝛾

𝜌
− 1, the material is to be selected using relations (30) and (28) 

 

𝜎𝑎 ≈
5∙𝐹𝑀(𝑖+0,665)

𝐷𝑎
2∙𝜌2                                                        (36) 

 

 The number of the active coils is determined by relations (16) or (17) and 𝐻0, and 𝐻 by relation 

(15) 
 

 If it is imposed a value of energy stored by the spring relation (18), the number of coils is 

determined by relation (20) 
 

 The stability (buckling) – is ensured by 𝛽 determination from relation (25) and modifying the 
form of end connections and guidance of the spring, or determining the number of the coils by 

relation (27) 

 



 

 
 

 

 

 

6.  Conclusions 

a) To avoid recalculation of the values of already calculated parameters, the proposed calculation 

method uses the same formulas from STAS, but sets out a set of restrictions that must be observed in 

the design stages. 
b) To optimize design, start with material selection, set minimum and maximum forces, also the type of 

deformation as well as the admissible dimensions. 

c) The method eliminates the re-calcuJations resulting from standard method, based on the restriction 
analysis. 

d) This comment has not analyzed the spring vibrations (because of the complexity of the investigation) 

and the fatigue calculation (same motivation). 
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