
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

88

 DOI: 10.21279/1454-864X-17-I2-018
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

MATLAB FUNCTION FOR COMPARING TWO STRINGS

Paul VASILIU1

1Lecturer Ph.D. Eng. Department of Electrical Engineering and Electronics, „MirceacelBătrân” Naval
Academy, No.1 Fulgerului Street, Constanţa, Romania
p_vasiliu@yahoo.com

Abstract:Strings play an important role in the programming field. The programming languages offer to the
programmers many functions to operate on strings. An important operation is the comparison of the strings.
Matlab offers a set of functions for elementary operations with strings like: strcmp, strcmpi, strncmp and
strncmpi. All these functions test whether two strings are identical or not. They do not offer information about
the order in which the strings are compared relative to the ASCII codes order of the characters. In the C
language there are defined the following functions: strcmp, stricmp, strncmp and strncimp that test the order
of two strings according to the ASCII codes of the characters. In this paper, the author presents an
implementation in Matlab of a function that produces that same comparison results as the strcmp function in
the C language.
Keywords:comparison, matlab, programming, string

INTRODUCTION
C Language offers to the developers a set of
specialized functions for strings operations. The
signature of these functions are defined in string.h
file. One of these functions is strcmp and has as
signature: intstrcmp (const char*, const char*).
The function has two input arguments which are
the addresses of the s1 and s2 strings. The
function compares the ASCII codes of the s1 and
s2 strings and returns a negative value if s1 < s2,
0 if s1 == s2 and a positive value if s1 > s2. This
function introduces an order relationship over the
set of strings considering the ASCII codes of the
characters. The function differentiates between
the ASCII codes of the lower case and upper case
characters.
The following program illustrates the usage of the
strcmp function in C language and highlights the
results generated by the strcmp function.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <string.h>

// Function for allocating the array
char *aloc(int n)
{
char *s;
s=(char *)malloc(n*sizeof(char));
return s;
}

// The main function
int main()
{
char *s1,*s2;

if((s1=aloc(100))!=NULL

&&(s2=aloc(100))!=NULL)
{
printf(" Successful allocation \n\n");
printf(" s1 : ");
gets(s1);
printf(" s2 : ");
gets(s2);
if(strcmp(s1,s2)<0)
printf(" %s < %s \n",s1,s2);
if(strcmp(s1,s2)==0)
printf(" %s == %s \n",s1,s2);
if(strcmp(s1,s2)>0)
printf(" %s > %s \n",s1,s2);
}
else
printf(" Allocation error \n");
getch();
}

Below there are a couple of examples for running
the program:

Successful allocation

s1 :abac
s2 :abAc
abac>abAc

Successful allocation

s1 :abac
s2 :abac
abac == abac

Successful allocation

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

89

 DOI: 10.21279/1454-864X-17-I2-018
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

s1 :abAc
s2 :abac
abAc<abac
Matlab offers to the user a set of functions
specialized in string operations. These functions
can be visualized with the following command:
>>help matlab\strfun. The function with signature
val=strcmp(s1,s2) from section “String operation”,
compares the strings s1 and s2 and returns
logical 1(true) if they are identical, and returns
logical 0 (false) otherwise. The function does not
compare the ASCII codes of the s1 and s2 strings
in the same way the strcmp function from C
language does in the string.h file. The Matlab
function does not consider sorting the set of
strings by ASCII codes. The function distinguishes
between the ASCII codesof the lower and upper
characters. The next script highlights how
thestrcmp function works in Matlab.

functionstrcmp_work
s1=input('String 1 : ','s');
s2=input('String 2 : ','s');
val=strcmp(s1,s2);
message=[‘The returned value by strcmp is: ',...
num2str(val)];
disp(message);
ifval==1
mesaj=[s1,' == ',s2];
disp(message);
else
mesaj=[s1,' ~= ',s2];
disp(message);
end
end

Below there are a couple of input variations for
running the script:

>>strcmp_work
String 1 :abac
String 2 :abAc
abac
abAc
The returned value by strcmpis : 0
abac ~= abAc

>>strcmp_work
String 1 :abac
String 2 :abac
abac
abac
The returned value by strcmp is: 1
abac == abac

>>strcmp_work
String 1 :abAc
String 2 :abac

abAc
abac
The returned value by strcmp is: 0
abAc ~= abac
Considering the previous results, the Matlab
function strcmp cannot sort the set of string the
way strcmp does it in the C language. There is a
high necessity to have a Matlab function that
orders a set of strings based on the their ASCII
codes.
In this paper, the author presents a Matlab
function that has the same behavior as the strcmp
function from the C language library.
ALGORITHM
Let us consider s1 and s2 the strings that we will
compare, and n1 and n2 will be the lengths of
these strings. There are two cases: first case is
when the strings have equal lengths, and the
second case is when the strings have different
lengths.
In the first case, we read the strings and compare
char by char and count how many characters are
equal. If this number equals the length of the two
strings then the strings are identical. For the
second case, we compute the n=min(n1,n2). We
compare the first n characters from both strings
and count how many of them match. Depending
on this number, we conclude that either s1<s2 or
s1>s2. The pseudo code of the comparison
algorithm can be found below:

% Case n1==n2
if n1==n2
then
assign found←0
fori=1 to n1
do
if s1(i)==s2(i)
then
assign found←found+1
endif
endfor
if found==n1
then
assignval←0
endif
endif

% Case n1 ~=n2
assign n←min(n1,n2)
assigni←1
while s1(i)==s2(i) &i<n
do
assigni←i+1
endwhile
if n==n1 &i==n
then
assignval ← -1

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

90

 DOI: 10.21279/1454-864X-17-I2-018
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

endif
if n==n2 &i==n
then
assignval←1
endif
if s1(i)<s2(i)
then
assignval←-1
else
assignval← 1
endif
endif

IMPLEMENTATION
The implementation of the algorithm is the
following:

% Compare s1 and s2 strings
% val=-1 if s1<s2
% val=0 if s1==s2
% val=1 if s1>s2

functionval=strcmp_pv(s1,s2)
n1=length(s1);
n2=length(s2);
if n1==n2
found=0;
fori=1:n1
if s1(i)==s2(i)
found=found+1;
end
end
if found==n1
message=['String',s1,' is identical to string',s2];
disp(message);
val=0;
return;
end
end
n=min([n1 n2]);
i=1;
while s1(i)==s2(i) &i<n
i=i+1;
end
if n==n1 &i==n
message=[s1,' < ',s2];
disp(message);
val=-1;
return;
end
if n==n2 &i==n

message=[s1,' > ',s2];
disp(message);
val=1;
return;
end
if s1(i)<s2(i)
message=[s1,' < ',s2];
disp(message);
val=-1;
else
message=[s1,' > ',s2];
disp(message);
val=1;
end
end

Input examples for running the script are the
following:

>> s1='abac'
>> s2='abAc'
>>strcmp_pv(s1,s2)
abac>abAc

ans =

1

>>strcmp_pv(s2,s1)
abAc<abac

ans =

 -1

>>strcmp_pv(s1,s1)
String abac is identical to string abac

ans =

 0

>> s2='abacabac'
>>strcmp_pv(s1,s2)
abac<abacabac

ans =

 -1

CONCLUSIONS
In this paper the author presented a new Matlab function named strcmp_pv that produces the same results
as the strcmp function from the C language library.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

91

 DOI: 10.21279/1454-864X-17-I2-018
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

From the large spectrum of future work we will enumerate:
- Writing a Matlab function similar to stricmp from the C language library;
- Writing a Matlab function similar to strncmp from the C language library;
- Writing a Matlab function similar to strnicmp from the C language library.

BIBLIOGRAPHY
[1] Băutu A., Vasiliu P., Bazele programării calculatoarelor, Ed. A.N.M.B., Constanţa 2009.
[2] Kernigham B., Ritchie D., The C programming language, Prentice Hall,1975.
[3] Matlab, The MATH WORKS Inc., Natick, Massachusetts, 1992.
[4] Vasiliu P., Programare în Matlab, Ed. ANMB, Constanţa 2015.
[5] Vasiliu P., Bǎutu A. Programarea calculatoarelor în limbajul C, Ed. Europolis, Constanţa, 2006.

