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Abstract:The problem of operations succession (the execution of multiple operations on a machine in the 
order in which the sum of the consumed times/cycles for getting ready the machine to move from one 
operation to another to be minimum), the traveling salesman problem (finding the shortest path that visits all 
the houses from his neighborhood) are problems that can be reduced to finding the Hamiltonian path in a 
directed graph. “Yu Chen’s algorithm” [1], [3], [5] solves the problem of finding the Hamiltonian path in a 
directed graph without cycles. The algorithm finds the adjacency matrix in a directed, finite graph, 
with𝑛𝑛vertices. If the graph has no cycles, the algorithm computes the powers of reaching the vertices. If the 
sum of the powers for reaching the vertices is equal to 𝑛𝑛 ∙ (𝑛𝑛 − 1) 2⁄ and if the powers for reaching the 
vertices are distinct two by two, then the graph has a Hamiltonian path defined by the powers of reaching the 
vertices.  In this paper, the author presents an implementation in C language of the Yu Chen algorithm. The 
program presents the computations of the adjacency matrix and test whether there are cycles or not in the 
graph. If there are no cycles, the program computes the powers of reaching the vertices, checks the 
requirements from Yu Chen’s theory and if they are satisfied, determines the Hamiltonian path in the graph. 
Keywords:algorithm, directed graph,hamiltonianpath, programming 
 
INTRODUCTION 
The problem of finding the Hamiltonian paths in a 
directed graph and without cycles has been 
solved by Yu Chen’s algorithm. Applying it 
manually is difficult if the number 𝑛𝑛 of vertices of 
the graph is high. In this paper, the author 
proposes an implementation in C language of the 
Yu Chen algorithm for finding the Hamiltonian 
path (if it exists), in a directed graph and without 
cycles. 
 
YU CHEN’s ALGORITHM 
Let us consider 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 } the set of 
vertices of graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) which is directed and 
without cycles, and let it be 𝑈𝑈 the set of edges. Let 
it be 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖 �,  𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 

𝑎𝑎𝑖𝑖𝑖𝑖 = �
1 𝑓𝑓𝑓𝑓𝑓𝑓 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � ∈ 𝑈𝑈
0 𝑓𝑓𝑓𝑓𝑓𝑓 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � ∉ 𝑈𝑈

� the adjacency matrix. 

Let it be 𝑙𝑙𝑖𝑖  row 𝑖𝑖 from the adjacency matrix. Let it 
be ⨁ the symbol of the boolean sum. For all 
𝑥𝑥,𝑦𝑦 ∈ {0,1}the boolean sum is defined by:  
𝑥𝑥⨁𝑦𝑦 = �0 𝑖𝑖𝑓𝑓 𝑥𝑥 = 0 𝑎𝑎𝑛𝑛𝑎𝑎 𝑦𝑦 = 0

1 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
�. For the 

following rows  𝑙𝑙𝑖𝑖 = (𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2,⋯ , 𝑎𝑎𝑖𝑖𝑛𝑛 )  and 𝑙𝑙𝑖𝑖 =
�𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2,⋯ , 𝑎𝑎𝑖𝑖𝑛𝑛 �  from the 𝐴𝐴 matrix we defined the 
operation 𝑙𝑙𝑖𝑖⨁𝑙𝑙𝑖𝑖 = �𝑎𝑎𝑖𝑖1⨁𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2⨁𝑎𝑎𝑖𝑖2,⋯ , 𝑎𝑎𝑖𝑖𝑛𝑛⨁𝑎𝑎𝑖𝑖𝑛𝑛 � 
as boolean sum between rows 𝑙𝑙𝑖𝑖and  𝑙𝑙𝑖𝑖 . 
The matrix of paths 𝐷𝐷 = �𝑎𝑎𝑖𝑖𝑖𝑖 �, 𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 of 
graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈), can be found with another 
algorithm written by Yu Chen and presented in 
this paper (C1 algorithm): 
 
start 

write adjacency matrix 𝐴𝐴 of the graph; 
 
fori=1 to 𝑛𝑛 // for each row 𝑙𝑙𝑖𝑖  from 𝐴𝐴 
do 
repeat 
find𝐽𝐽 = �𝑖𝑖 | 𝑎𝑎𝑖𝑖𝑖𝑖 = 1� 
for𝑖𝑖 ∈ 𝐽𝐽 
assign𝑙𝑙𝑖𝑖 ← 𝑙𝑙𝑖𝑖⨁𝑙𝑙𝑖𝑖  
assign𝐷𝐷 ← 𝐴𝐴 
until𝑙𝑙𝑖𝑖 is unchanged 
endfor 
end 
 
If there is 𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} with the property that 
𝑎𝑎𝑖𝑖𝑖𝑖 = 1 then the graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) has cycles and 
in this case, Yu Chen’s algorithm for finding the 
Hamiltonian path cannot be applied. If 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 for 
every 𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} then Yu Chen’s algorithm can 
be applied to find the Hamiltonian path. It is 
named power for reaching the vertices 𝑥𝑥𝑖𝑖  and is 
identified as 𝑝𝑝𝑖𝑖 , the number of vertices 𝑥𝑥𝑖𝑖  for which 
there is at least one path from 𝑥𝑥𝑖𝑖  to 𝑥𝑥𝑖𝑖 . It is 
straightforward to notice that 𝑝𝑝𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1  (the 
number of values equal to 1 from row 𝑖𝑖 from the 
path matrix 𝐷𝐷). 
The algorithm is based on the following theoretical 
results from Yu Chen [1], [3], [5],  that we will use 
without a proof. 
Sentence 1. Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph, 
without cycles. For each edge �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � ∈ 𝑈𝑈 there is 
the following inequality 𝑝𝑝𝑖𝑖 ≥ 𝑝𝑝𝑖𝑖 . 
Sentence 2. Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph, 
without cycles in which there is a path from 𝑥𝑥𝑖𝑖 to 
𝑥𝑥𝑖𝑖 , then we have the following statement 𝑝𝑝𝑖𝑖 ≥ 𝑝𝑝𝑖𝑖 . 
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Theorem 1. (Chen) Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed 
graph, without cycles and with 𝑛𝑛 vertices. Graph 
𝐺𝐺 = (𝑋𝑋,𝑈𝑈) contains a Hamiltonian path if and only 
if ∑ 𝑝𝑝𝑖𝑖 = 𝑛𝑛∙(𝑛𝑛−1)

2
𝑛𝑛
𝑖𝑖=1 .  

Theorem 2. Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph, 
without cycles. If the graf contains a Hamiltonian 
path then this the path is unique. 
Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph, without 
cycles. Yu Chen’s algorithms for finding the 
Hamiltonian path in graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) follows the 
below steps: 

Step 1. Write the adjacency matrix 𝐴𝐴. 
Step 2. Build the matrix of paths 𝐷𝐷by using the C1 
algorithm. 
If (∃)𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} having 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 
then end 
elsegoto step 3.  
Step 3. Find the powers of reaching the vertices 
𝑝𝑝𝑖𝑖 , 𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛}  and compute ∑ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 . 
if∑ 𝑝𝑝𝑖𝑖 ≠

𝑛𝑛∙(𝑛𝑛−1)
2

𝑛𝑛
𝑖𝑖=1  

then end 
else go to step 4. 
Step 4. We sort in descending order the powers of 
reaching the vertices. Let it be 𝜎𝜎 ∈ 𝑆𝑆𝑛𝑛  the 
permutation with the following property 𝑝𝑝𝜎𝜎(1) >
𝑝𝑝𝜎𝜎(2) > ⋯ > 𝑝𝑝𝜎𝜎(𝑛𝑛). The Hamiltonian path from 
graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) will be the path 𝑎𝑎𝐻𝐻 =
�𝑥𝑥𝜎𝜎(1), 𝑥𝑥𝜎𝜎(2),⋯ , 𝑥𝑥𝜎𝜎(𝑛𝑛)�.  
We will go through an example with a simple 
graph for the Yu Chen algorithm. Let it be 
𝐺𝐺 = (𝑋𝑋,𝑈𝑈) the graph defined by the set of vertices 
𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4} and the set of edges 𝑈𝑈 =
{(𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥1, 𝑥𝑥3), (𝑥𝑥3, 𝑥𝑥2), (𝑥𝑥3, 𝑥𝑥4), (𝑥𝑥4, 𝑥𝑥2)}, with the 
below representation from figure 1. 

 

Figure 1. Graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) 
 
We can easily notice that the graph from figure 1 
is directed and without cycles. We can also 
identify that path 𝑎𝑎𝐻𝐻 = {𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥2} is the unique 
Hamiltonian path from this graph. 
We will find these results manually by applying Yu 
Chen’s algorithm (C1 algorithm). 

The adjacency matrix of graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈)is 

𝐴𝐴 = �
0 1
0 0

1 0
0 0

0 1
0 1

0 1
0 0

�. We will build the matrix of 

paths. 
We fix row 1. Because items 𝑎𝑎12  and 𝑎𝑎13  from 
matrix 𝐴𝐴 are not null, we add the Boolean sum 
between rows 2 and 3 to the first row from A 

matrix. We obtainmatrix𝐷𝐷 = �
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. 

Because the elements 𝑎𝑎12, 𝑎𝑎13 şi 𝑎𝑎14 from matrix 
D are not nulls, we add the Boolean sum between 
rows 2,3, 4 to row 1 from matrix 𝐷𝐷 . We obtain 

matrix 𝐷𝐷 = �
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. Because row 1 hasn’t 

changed, we fix the next row (row 2) from matrix 
𝐷𝐷. 
We fix the second row. Because all the elements 
on row 2 are nulls from matrix 𝐷𝐷, we fix the next 
rows. 
We fix the third row. Because the elements 𝑎𝑎32, 
and 𝑎𝑎34 from matrix 𝐷𝐷 are not null, we add the 
Boolean sum between rows 2 and 4 to row 3 in 

matrix 𝐷𝐷. We obtain matrix 𝐷𝐷 = �
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. 

Because row 3 hasn’t changed, we fix the next 
row (row 4) in matrix 𝐷𝐷. 
We fix row 4. Because on row 4 the element 𝑎𝑎42 is 
not null, we add the Boolean sum between row 2 
to row 4 from matrix 𝐷𝐷. We obtain matrix 𝐷𝐷 =

�
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. Because row 4 hasn’t changed, 

Yu Chen’s algorithm for finding the paths matrix is 
completed. We obtain the path matrix 𝐷𝐷 =

�
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. We can notice that all the 

elements from the main diagonal are null, so we 
conclude that the graph has no cycles. 
We will compute the powers of reaching the 
vertices as below: 
𝑝𝑝1 = ∑ 𝑎𝑎1𝑖𝑖 = 34

𝑖𝑖=1 ,  𝑝𝑝2 = ∑ 𝑎𝑎2𝑖𝑖 = 04
𝑖𝑖=1 ,  𝑝𝑝3 =

∑ 𝑎𝑎3𝑖𝑖 = 24
𝑖𝑖=1   and  𝑝𝑝4 = ∑ 𝑎𝑎4𝑖𝑖 = 14

𝑖𝑖=1 .  
We verify the equality  ∑ 𝑝𝑝𝑖𝑖 = 𝑛𝑛∙(𝑛𝑛−1)

2
𝑛𝑛
𝑖𝑖=1   from 

Chen’s theorem. In our case, we have 𝑛𝑛 = 4and 
∑ 𝑝𝑝𝑖𝑖 = 3 + 0 + 2 + 1 = 6 = 4∙(4−1)

2
4
𝑖𝑖=1 . This proves 

that the graph has a single Hamiltonian path.  
We will identify now the Hamiltonian path. We sort 
in descending order the powers of reaching the 
vertices and we obtain: 𝑝𝑝1 > 𝑝𝑝3 > 𝑝𝑝4 > 𝑝𝑝2. Based 
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on this, we conclude that the Hamiltonian path is: 
𝑎𝑎𝐻𝐻 = {𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥2}. 
 
Let us consider graph 𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1) defined by the 
set of vertices 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4} and the set of 
edges: 
𝑈𝑈1 = {(𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥1, 𝑥𝑥3), (𝑥𝑥2, 𝑥𝑥3), (𝑥𝑥3, 𝑥𝑥4), (𝑥𝑥4, 𝑥𝑥2)}, 
having the representation from figure 2.We can 
notice that the graph is directed and has cycles. A 
cycle in graph 𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1)is: {𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥2}. In this 
case, Yu Chen’s algorithm for finding the 
Hamiltonian path cannot be applied. 

 

Figure 2. Graph 𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1) 
 
IMPLEMENTATION 
The program written in C language, reads the 
input data from a text file named graphdh.txt with 
the following configuration: on the first row, we 
find the number of vertices 𝑛𝑛 and the number of 
edges 𝑚𝑚 from the graph, separated by an empty 
space. On the next 𝑚𝑚 lines from the file we find 
the indices of the edges in the graph. The 
program follows the below steps: 
 
Step 1. Read input file graphdh.txt. 
Step 2. Compute adjacency matrix. 
Step 3. Test whether the graph has cycles. If we 
find cycles, we exit the program. If there are no 
cycles, we continue with step 4. 
Step 4. Compute the powers for reaching the 
vertices. 
Step 5. If the condition from the Chen’s theorem is 
not fullfiled (theorem 1) we exit the program with 
the conclusion that the graph doesn’t have any 
Hamiltonian path. Otherwise, we continue the 
execution of the program with step 6.  
Step 6. Sort in descending order the powers of 
reaching the vertices. 
Step 7. Find and print the Hamiltonian path. 
Step 8. End. 
 
 
// Yu Chen’s algorithm 

// The matrix of the paths in a directed graph 
// Hamiltonian path in a directed graph without 
cycles 
// Input files graphdh.txt, graphdh1.txt 
 
“ 
#include <stdio.h> 
#include <conio.h> 
#include <malloc.h> 
#define dim 1000 
 
typedefstruct arc  
{ 
int x; int y; 
}edge; 
edge mu[dim];   // mu array of edges   
 
struct date 
{ 
intval,poz; 
}; 
  
// Matrix allocation 
int ** alocmat (int n)  
{ 
inti; 
int ** p=(int **) malloc ((n+1)*sizeof (int *)); 
if ( p != NULL) 
for (i=0; i<=n ;i++) 
p[i] =(int *) calloc ((n+1),sizeof (int)); 
return p; 
} 
 
// Function for allocating the array date 
date *alocvs(int n) 
{ 
date *p; 
p=(date *)malloc(n*sizeof(date)); 
return p; 
} 
// Function for allocating the array 
int *alocv(int n) 
{ 
int *p; 
p=(int *)malloc((n+1)*sizeof(int)); 
return p; 
} 
 
// Function for displaying the array 
voiddisplayv(intn,int *v) //  
{ 
inti; 
for(i=1;i<=n;i++) 
printf(" %d ",v[i]); 
printf("\n"); 
} 
 
// Function for displaying matrix n x n 
voiddisplaym(int **a,intn,const char *c)   
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{ 
inti,j; 
printf("\n %s \n\n",c); 
for(i=1;i<=n;i++) 
{ 
for(j=1;j<=n;j++) 
printf(" %2d ",a[i][j]); 
printf("\n"); 
} 
} 
 
//Function for reading n, m 
intread_n_m(int&n, int&m, char *name) 
{ 
FILE *f; 
if((f=fopen(name,"r"))!= NULL)  
{  
fscanf(f,"%d %d",&n,&m); 
fclose(f); 
return 1; 
} 
else 
return 0; 
} 
 
// Function for displaying the edges of the graph 
voiddisplay_edges(int m) 
{  
inti; 
printf("\n Graph G has %d edges \n\n",m);  
for(i=1;i<=m;i++) 
printf(" Edge %d:\t ( x%d , x%d ) 
\n",i,mu[i].x,mu[i].y);   
printf("\n"); 
} 
 
//Function for reading the input file and  
//building the adjacency matrix 
intread_graph(char *name, int **a) 
{ 
inti,j,x,y,val,n,m; 
FILE *f; 
if((f=fopen(name,"r")) != NULL)  
{ 
fscanf(f,"%d %d",&n,&m); 
for(i=1;i<=m;i++) 
{ 
fscanf(f,"%d %d",&mu[i].x,&mu[i].y); 
a[mu[i].x][mu[i].y]=1; 
} 
fclose(f); 
return 1; 
} 
else 
return 0; 
} 
“ [6] 
 
// Boolean sum 

intsumb(inta,int b) 
{ 
if(a==0 && b==0) 
return 0; 
else 
return 1; 
} 
 
// Boolean sum of two arrays 
voidsumbv(int *v,int *v1,int *v2, int n) 
{ 
inti; 
for(i=1;i<=n;i++) 
v[i]=sumb(v1[i],v2[i]); 
} 
 
// Extracting row l from matrix a 
voidextrag(int **a,int *v,intl,int n) 
{ 
int j; 
for(j=1;j<=n;j++) 
v[j]=a[l][j]; 
} 
 
// Comparing arrays  
intcompar(int *v1,int *v2,int n) 
{ 
intcomp,i; 
comp=0; 
for(i=1;i<=n;i++) 
if(v1[i] != v2[i]) 
comp++; 
return comp; 
} 
 
// Assign v1 <- v2 
voidassignv(int *v1,int *v2,int n) 
{ 
inti; 
for(i=1;i<=n;i++) 
v1[i]=v2[i]; 
} 
 
// Generating the matrix of the paths 
void gen(int **a,int **d,int n) 
{ 
inti,j,k,*li,*li1,*li2,*li3; 
li=alocv(n); 
li1=alocv(n); 
li2=alocv(n); 
li3=alocv(n); 
for(i=1;i<=n;i++) 
{ 
extrag(a,li,i,n); 
assignv(li1,li,n); 
assignv(li3,li,n); 
do 
{ 
for(j=1;j<=n;j++) 
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{ 
if(li3[j]==1) 
{ 
extrag(a,li2,j,n); 
sumbv(li1,li1,li2,n); 
} 
assignv(li3,li1,n); 
} 
}while(compar(li1,li3,n) != 0); 
for(j=1;j<=n;j++) 
d[i][j]=li1[j]; 
} 
} 
 
// Function for finding cycles  
int cycles(int **d,int n) 
{ 
inti,exist; 
exist=0; 
for(i=1;i<=n;i++) 
if(d[i][i]==1) 
exist++; 
return exist; 
} 
 
// Sorting in descending order the array of the 
// reaching powers 
voidsortd(int *p,int *poz,int n) 
{ 
inti,j; 
date *pa,aux; 
pa=alocvs(n); 
for(i=1;i<=n;i++) 
 { 
pa[i-1].val=p[i]; 
pa[i-1].poz=i; 
  } 
for(i=1;i<=n;i++) 
for(j=i+1;j<=n;j++) 
if(pa[i-1].val<=pa[j-1].val) 
{ 
aux=pa[i-1]; 
pa[i-1]=pa[j-1]; 
pa[j-1]=aux; 
} 
for(i=1;i<=n;i++) 
poz[i]=pa[i-1].poz; 
} 
 
// Printing the Hamiltonian path 
voidafisdh(int *poz,int n) 
{ 
inti; 
printf("\n\n Hamiltonian path is : { "); 
for(i=1;i<n;i++) 
printf(" x%d, ",poz[i]); 
printf(" x%d } \n",poz[i]); 
} 
 

// Function for implementing Chen’s algorithm for 
// finding the Hamiltonian path in directed graphs 
// without cycles 
voidchen(int **d,int n) 
{ 
int *p,i,j,n1,*poz; 
p=alocv(n); 
poz=alocv(n); 
if(cycles(d,n) == 0) 
{ 
for(n1=0,i=1;i<=n;i++) 
for(j=1;j<=n;j++) 
if(d[i][j]==1) 
n1++; 
if(n1 != n*(n-1)/2) 
printf("\n\n The graph doesn’t have a Hamiltonian 
path. \n");  
else 
{ 
printf("\n\n The graph has a Hamiltonian path. 
\n\n"); 
for(i=1;i<=n;i++) 
{ 
p[i]=0; 
for(j=1;j<=n;j++) 
if(d[i][j]==1) 
p[i]++; 
} 
for(i=1;i<=n;i++) 
printf(" The power of reaching vertex x%d is %d 
\n",i,p[i]); 
sortd(p,poz,n); 
afisdh(poz,n); 
} 
} 
else 
{ 
printf(" The graph has cycles \n"); 
printf(" Yu Chen’s algorithm is not applicable. \n"); 
} 
} 
 
// The main function      
int main() 
{ 
intn,m,**a,**d; 
char name[30]; 
FILE *f; 
printf("\n File name : ");  
fflush(stdin); 
gets(name);  
if(read_n_m(n,m,name))  
{ 
printf("\n Number of vertices %d \n",n); 
printf(" Number of edges %d \n",m);  
getch(); 
a=alocmat(n); 
d=alocmat(n); 
if(read_graph(name,a)) 
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{ 
displaym(a,n," Graph adjacency matrix \n");  
display_edges(m);  
gen(a,d,n); 
displaym(d,n," Paths matrix \n"); 
} 
chen(d,n); 
} 
getch(); 
} 
 
We will use as inputs for the program graphs 
𝐺𝐺 = (𝑋𝑋,𝑈𝑈) and𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1) from figures 1 and 2. 
The input file graphdh.txt associated with graph 
𝐺𝐺 = (𝑋𝑋,𝑈𝑈)from figure 1 is: 
 
4 5 
1 2 
1 3 
3 2 
3 4 
4 2  
 
After running the program, we obtain the following 
results: 
 
 
File name : graphdh.txt 
 
Number of vertices 4 
Number of edges 5 
 
Graph adjacency matrix 
 
0   1   1   0 
0   0   0   0 
0   1   0   1 
0   1   0   0 
 
Graph G has 5 edges 
 
Edge 1:         ( x1 , x2 ) 
Edge 2:         ( x1 , x3 ) 
Edge 3:         ( x3 , x2 ) 
Edge 4:         ( x3 , x4 ) 
Edge 5:         ( x4 , x2 ) 
 
Paths matrix 
 
0   1   1   1 
0   0   0   0 
0   1   0   1 
0   1   0   0 
 

The graph has a Hamiltonian path 
 
The power of reaching vertex x1 is 3 
The power of reaching vertex x2 is 0 
The power of reaching vertex x3 is 2 
The power of reaching vertex x4 is 1 
 
Hamiltonian path is:  {  x1,  x3,  x4,  x2 } 
 
The input file graphdh1.txt associated with graph 
𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1)from figure 2 is: 
 
4 5 
1 2 
1 3  
2 3 
3 4 
4 2 
 
After running the program, we obtain the following 
results: 
 
File name : graphdh1.txt 
 
Number of vertices 4 
Number of edges 5 
 
Graph adjacency matrix 
 
0   1   1   0 
0   0   1   0 
0   0   0   1 
0   1   0   0 
 
Graph G has 5 edges 
 
Edge 1:         ( x1 , x2 ) 
Edge 2:         ( x1 , x3 ) 
Edge 3:         ( x2 , x3 ) 
Edge 4:         ( x3 , x4 ) 
Edge 5:         ( x4 , x2 ) 
 
Paths matrix 
 
0   1   1   1 
0   1   1   1 
0   1   0   1 
0   1   1   1 
 
The graph has cycles. 
Yu Chen’s algorithm is not applicable. 
 
 

 
CONCLUSIONS 
In this paper, the author presented a implementation in C language of Yu Chen’s algorithms for finding the 
Hamiltonian path (if one exists) in a directed graph, without cycles, that has a maximum number of 1000 
vertices. We briefly presented Yu Chen’s algorithm together with the theory behind it. We have also included 
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the proposed implementation in detail. The paper discusses an example which is solved not only manually, 
but also programmatically by using the program developed by the author. Yu Chen’s algorithm is applicable 
only for directed graphs that don’t have cycles. 
From the large spectrum of future work we will enumerate: 

- The development of an algorithm for directed graphs with cycles 
Writing an extended program for graphs with cycles. 
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