
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

81
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

AUTOMATICALLY FINDING THE HAMILTONIAN PATH IN A DIRECTED GRAPH

WITHOUT CYCLES BY USING THE YU CHEN ALGORITHM

Paul VASILIU1

1Lecturer Ph.D. Eng. Department of Electrical Engineering and Electronics, „MirceacelBătrân” Naval
Academy, No.1 Fulgerului Street, Constanţa, Romania
p_vasiliu@yahoo.com

Abstract:The problem of operations succession (the execution of multiple operations on a machine in the
order in which the sum of the consumed times/cycles for getting ready the machine to move from one
operation to another to be minimum), the traveling salesman problem (finding the shortest path that visits all
the houses from his neighborhood) are problems that can be reduced to finding the Hamiltonian path in a
directed graph. “Yu Chen’s algorithm” [1], [3], [5] solves the problem of finding the Hamiltonian path in a
directed graph without cycles. The algorithm finds the adjacency matrix in a directed, finite graph,
with𝑛𝑛vertices. If the graph has no cycles, the algorithm computes the powers of reaching the vertices. If the
sum of the powers for reaching the vertices is equal to 𝑛𝑛 ∙ (𝑛𝑛 − 1) 2⁄ and if the powers for reaching the
vertices are distinct two by two, then the graph has a Hamiltonian path defined by the powers of reaching the
vertices. In this paper, the author presents an implementation in C language of the Yu Chen algorithm. The
program presents the computations of the adjacency matrix and test whether there are cycles or not in the
graph. If there are no cycles, the program computes the powers of reaching the vertices, checks the
requirements from Yu Chen’s theory and if they are satisfied, determines the Hamiltonian path in the graph.
Keywords:algorithm, directed graph,hamiltonianpath, programming

INTRODUCTION
The problem of finding the Hamiltonian paths in a
directed graph and without cycles has been
solved by Yu Chen’s algorithm. Applying it
manually is difficult if the number 𝑛𝑛 of vertices of
the graph is high. In this paper, the author
proposes an implementation in C language of the
Yu Chen algorithm for finding the Hamiltonian
path (if it exists), in a directed graph and without
cycles.

YU CHEN’s ALGORITHM
Let us consider 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 } the set of
vertices of graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) which is directed and
without cycles, and let it be 𝑈𝑈 the set of edges. Let
it be 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖 �, 𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛,

𝑎𝑎𝑖𝑖𝑖𝑖 = �
1 𝑓𝑓𝑓𝑓𝑓𝑓 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � ∈ 𝑈𝑈
0 𝑓𝑓𝑓𝑓𝑓𝑓 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � ∉ 𝑈𝑈

� the adjacency matrix.

Let it be 𝑙𝑙𝑖𝑖 row 𝑖𝑖 from the adjacency matrix. Let it
be ⨁ the symbol of the boolean sum. For all
𝑥𝑥,𝑦𝑦 ∈ {0,1}the boolean sum is defined by:
𝑥𝑥⨁𝑦𝑦 = �0 𝑖𝑖𝑓𝑓 𝑥𝑥 = 0 𝑎𝑎𝑛𝑛𝑎𝑎 𝑦𝑦 = 0

1 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
�. For the

following rows 𝑙𝑙𝑖𝑖 = (𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2,⋯ , 𝑎𝑎𝑖𝑖𝑛𝑛) and 𝑙𝑙𝑖𝑖 =
�𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2,⋯ , 𝑎𝑎𝑖𝑖𝑛𝑛 � from the 𝐴𝐴 matrix we defined the
operation 𝑙𝑙𝑖𝑖⨁𝑙𝑙𝑖𝑖 = �𝑎𝑎𝑖𝑖1⨁𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2⨁𝑎𝑎𝑖𝑖2,⋯ , 𝑎𝑎𝑖𝑖𝑛𝑛⨁𝑎𝑎𝑖𝑖𝑛𝑛 �
as boolean sum between rows 𝑙𝑙𝑖𝑖and 𝑙𝑙𝑖𝑖 .
The matrix of paths 𝐷𝐷 = �𝑎𝑎𝑖𝑖𝑖𝑖 �, 𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 of
graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈), can be found with another
algorithm written by Yu Chen and presented in
this paper (C1 algorithm):

start

write adjacency matrix 𝐴𝐴 of the graph;

fori=1 to 𝑛𝑛 // for each row 𝑙𝑙𝑖𝑖 from 𝐴𝐴
do
repeat
find𝐽𝐽 = �𝑖𝑖 | 𝑎𝑎𝑖𝑖𝑖𝑖 = 1�
for𝑖𝑖 ∈ 𝐽𝐽
assign𝑙𝑙𝑖𝑖 ← 𝑙𝑙𝑖𝑖⨁𝑙𝑙𝑖𝑖
assign𝐷𝐷 ← 𝐴𝐴
until𝑙𝑙𝑖𝑖 is unchanged
endfor
end

If there is 𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} with the property that
𝑎𝑎𝑖𝑖𝑖𝑖 = 1 then the graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) has cycles and
in this case, Yu Chen’s algorithm for finding the
Hamiltonian path cannot be applied. If 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 for
every 𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} then Yu Chen’s algorithm can
be applied to find the Hamiltonian path. It is
named power for reaching the vertices 𝑥𝑥𝑖𝑖 and is
identified as 𝑝𝑝𝑖𝑖 , the number of vertices 𝑥𝑥𝑖𝑖 for which
there is at least one path from 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖 . It is
straightforward to notice that 𝑝𝑝𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 (the
number of values equal to 1 from row 𝑖𝑖 from the
path matrix 𝐷𝐷).
The algorithm is based on the following theoretical
results from Yu Chen [1], [3], [5], that we will use
without a proof.
Sentence 1. Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph,
without cycles. For each edge �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � ∈ 𝑈𝑈 there is
the following inequality 𝑝𝑝𝑖𝑖 ≥ 𝑝𝑝𝑖𝑖 .
Sentence 2. Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph,
without cycles in which there is a path from 𝑥𝑥𝑖𝑖 to
𝑥𝑥𝑖𝑖 , then we have the following statement 𝑝𝑝𝑖𝑖 ≥ 𝑝𝑝𝑖𝑖 .

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

82
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Theorem 1. (Chen) Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed
graph, without cycles and with 𝑛𝑛 vertices. Graph
𝐺𝐺 = (𝑋𝑋,𝑈𝑈) contains a Hamiltonian path if and only
if ∑ 𝑝𝑝𝑖𝑖 = 𝑛𝑛∙(𝑛𝑛−1)

2
𝑛𝑛
𝑖𝑖=1 .

Theorem 2. Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph,
without cycles. If the graf contains a Hamiltonian
path then this the path is unique.
Let it be 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) a directed graph, without
cycles. Yu Chen’s algorithms for finding the
Hamiltonian path in graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) follows the
below steps:

Step 1. Write the adjacency matrix 𝐴𝐴.
Step 2. Build the matrix of paths 𝐷𝐷by using the C1
algorithm.
If (∃)𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} having 𝑎𝑎𝑖𝑖𝑖𝑖 = 1
then end
elsegoto step 3.
Step 3. Find the powers of reaching the vertices
𝑝𝑝𝑖𝑖 , 𝑖𝑖 ∈ {1,2,⋯ ,𝑛𝑛} and compute ∑ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 .
if∑ 𝑝𝑝𝑖𝑖 ≠

𝑛𝑛∙(𝑛𝑛−1)
2

𝑛𝑛
𝑖𝑖=1

then end
else go to step 4.
Step 4. We sort in descending order the powers of
reaching the vertices. Let it be 𝜎𝜎 ∈ 𝑆𝑆𝑛𝑛 the
permutation with the following property 𝑝𝑝𝜎𝜎(1) >
𝑝𝑝𝜎𝜎(2) > ⋯ > 𝑝𝑝𝜎𝜎(𝑛𝑛). The Hamiltonian path from
graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈) will be the path 𝑎𝑎𝐻𝐻 =
�𝑥𝑥𝜎𝜎(1), 𝑥𝑥𝜎𝜎(2),⋯ , 𝑥𝑥𝜎𝜎(𝑛𝑛)�.
We will go through an example with a simple
graph for the Yu Chen algorithm. Let it be
𝐺𝐺 = (𝑋𝑋,𝑈𝑈) the graph defined by the set of vertices
𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4} and the set of edges 𝑈𝑈 =
{(𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥1, 𝑥𝑥3), (𝑥𝑥3, 𝑥𝑥2), (𝑥𝑥3, 𝑥𝑥4), (𝑥𝑥4, 𝑥𝑥2)}, with the
below representation from figure 1.

Figure 1. Graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈)

We can easily notice that the graph from figure 1
is directed and without cycles. We can also
identify that path 𝑎𝑎𝐻𝐻 = {𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥2} is the unique
Hamiltonian path from this graph.
We will find these results manually by applying Yu
Chen’s algorithm (C1 algorithm).

The adjacency matrix of graph 𝐺𝐺 = (𝑋𝑋,𝑈𝑈)is

𝐴𝐴 = �
0 1
0 0

1 0
0 0

0 1
0 1

0 1
0 0

�. We will build the matrix of

paths.
We fix row 1. Because items 𝑎𝑎12 and 𝑎𝑎13 from
matrix 𝐴𝐴 are not null, we add the Boolean sum
between rows 2 and 3 to the first row from A

matrix. We obtainmatrix𝐷𝐷 = �
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�.

Because the elements 𝑎𝑎12, 𝑎𝑎13 şi 𝑎𝑎14 from matrix
D are not nulls, we add the Boolean sum between
rows 2,3, 4 to row 1 from matrix 𝐷𝐷 . We obtain

matrix 𝐷𝐷 = �
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. Because row 1 hasn’t

changed, we fix the next row (row 2) from matrix
𝐷𝐷.
We fix the second row. Because all the elements
on row 2 are nulls from matrix 𝐷𝐷, we fix the next
rows.
We fix the third row. Because the elements 𝑎𝑎32,
and 𝑎𝑎34 from matrix 𝐷𝐷 are not null, we add the
Boolean sum between rows 2 and 4 to row 3 in

matrix 𝐷𝐷. We obtain matrix 𝐷𝐷 = �
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�.

Because row 3 hasn’t changed, we fix the next
row (row 4) in matrix 𝐷𝐷.
We fix row 4. Because on row 4 the element 𝑎𝑎42 is
not null, we add the Boolean sum between row 2
to row 4 from matrix 𝐷𝐷. We obtain matrix 𝐷𝐷 =

�
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. Because row 4 hasn’t changed,

Yu Chen’s algorithm for finding the paths matrix is
completed. We obtain the path matrix 𝐷𝐷 =

�
0 1
0 0

1 1
0 0

0 1
0 1

0 1
0 0

�. We can notice that all the

elements from the main diagonal are null, so we
conclude that the graph has no cycles.
We will compute the powers of reaching the
vertices as below:
𝑝𝑝1 = ∑ 𝑎𝑎1𝑖𝑖 = 34

𝑖𝑖=1 , 𝑝𝑝2 = ∑ 𝑎𝑎2𝑖𝑖 = 04
𝑖𝑖=1 , 𝑝𝑝3 =

∑ 𝑎𝑎3𝑖𝑖 = 24
𝑖𝑖=1 and 𝑝𝑝4 = ∑ 𝑎𝑎4𝑖𝑖 = 14

𝑖𝑖=1 .
We verify the equality ∑ 𝑝𝑝𝑖𝑖 = 𝑛𝑛∙(𝑛𝑛−1)

2
𝑛𝑛
𝑖𝑖=1 from

Chen’s theorem. In our case, we have 𝑛𝑛 = 4and
∑ 𝑝𝑝𝑖𝑖 = 3 + 0 + 2 + 1 = 6 = 4∙(4−1)

2
4
𝑖𝑖=1 . This proves

that the graph has a single Hamiltonian path.
We will identify now the Hamiltonian path. We sort
in descending order the powers of reaching the
vertices and we obtain: 𝑝𝑝1 > 𝑝𝑝3 > 𝑝𝑝4 > 𝑝𝑝2. Based

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

83
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

on this, we conclude that the Hamiltonian path is:
𝑎𝑎𝐻𝐻 = {𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥2}.

Let us consider graph 𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1) defined by the
set of vertices 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4} and the set of
edges:
𝑈𝑈1 = {(𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥1, 𝑥𝑥3), (𝑥𝑥2, 𝑥𝑥3), (𝑥𝑥3, 𝑥𝑥4), (𝑥𝑥4, 𝑥𝑥2)},
having the representation from figure 2.We can
notice that the graph is directed and has cycles. A
cycle in graph 𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1)is: {𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥2}. In this
case, Yu Chen’s algorithm for finding the
Hamiltonian path cannot be applied.

Figure 2. Graph 𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1)

IMPLEMENTATION
The program written in C language, reads the
input data from a text file named graphdh.txt with
the following configuration: on the first row, we
find the number of vertices 𝑛𝑛 and the number of
edges 𝑚𝑚 from the graph, separated by an empty
space. On the next 𝑚𝑚 lines from the file we find
the indices of the edges in the graph. The
program follows the below steps:

Step 1. Read input file graphdh.txt.
Step 2. Compute adjacency matrix.
Step 3. Test whether the graph has cycles. If we
find cycles, we exit the program. If there are no
cycles, we continue with step 4.
Step 4. Compute the powers for reaching the
vertices.
Step 5. If the condition from the Chen’s theorem is
not fullfiled (theorem 1) we exit the program with
the conclusion that the graph doesn’t have any
Hamiltonian path. Otherwise, we continue the
execution of the program with step 6.
Step 6. Sort in descending order the powers of
reaching the vertices.
Step 7. Find and print the Hamiltonian path.
Step 8. End.

// Yu Chen’s algorithm

// The matrix of the paths in a directed graph
// Hamiltonian path in a directed graph without
cycles
// Input files graphdh.txt, graphdh1.txt

“
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#define dim 1000

typedefstruct arc
{
int x; int y;
}edge;
edge mu[dim]; // mu array of edges

struct date
{
intval,poz;
};

// Matrix allocation
int ** alocmat (int n)
{
inti;
int ** p=(int **) malloc ((n+1)*sizeof (int *));
if (p != NULL)
for (i=0; i<=n ;i++)
p[i] =(int *) calloc ((n+1),sizeof (int));
return p;
}

// Function for allocating the array date
date *alocvs(int n)
{
date *p;
p=(date *)malloc(n*sizeof(date));
return p;
}
// Function for allocating the array
int *alocv(int n)
{
int *p;
p=(int *)malloc((n+1)*sizeof(int));
return p;
}

// Function for displaying the array
voiddisplayv(intn,int *v) //
{
inti;
for(i=1;i<=n;i++)
printf(" %d ",v[i]);
printf("\n");
}

// Function for displaying matrix n x n
voiddisplaym(int **a,intn,const char *c)

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

84
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

{
inti,j;
printf("\n %s \n\n",c);
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf(" %2d ",a[i][j]);
printf("\n");
}
}

//Function for reading n, m
intread_n_m(int&n, int&m, char *name)
{
FILE *f;
if((f=fopen(name,"r"))!= NULL)
{
fscanf(f,"%d %d",&n,&m);
fclose(f);
return 1;
}
else
return 0;
}

// Function for displaying the edges of the graph
voiddisplay_edges(int m)
{
inti;
printf("\n Graph G has %d edges \n\n",m);
for(i=1;i<=m;i++)
printf(" Edge %d:\t (x%d , x%d)
\n",i,mu[i].x,mu[i].y);
printf("\n");
}

//Function for reading the input file and
//building the adjacency matrix
intread_graph(char *name, int **a)
{
inti,j,x,y,val,n,m;
FILE *f;
if((f=fopen(name,"r")) != NULL)
{
fscanf(f,"%d %d",&n,&m);
for(i=1;i<=m;i++)
{
fscanf(f,"%d %d",&mu[i].x,&mu[i].y);
a[mu[i].x][mu[i].y]=1;
}
fclose(f);
return 1;
}
else
return 0;
}
“ [6]

// Boolean sum

intsumb(inta,int b)
{
if(a==0 && b==0)
return 0;
else
return 1;
}

// Boolean sum of two arrays
voidsumbv(int *v,int *v1,int *v2, int n)
{
inti;
for(i=1;i<=n;i++)
v[i]=sumb(v1[i],v2[i]);
}

// Extracting row l from matrix a
voidextrag(int **a,int *v,intl,int n)
{
int j;
for(j=1;j<=n;j++)
v[j]=a[l][j];
}

// Comparing arrays
intcompar(int *v1,int *v2,int n)
{
intcomp,i;
comp=0;
for(i=1;i<=n;i++)
if(v1[i] != v2[i])
comp++;
return comp;
}

// Assign v1 <- v2
voidassignv(int *v1,int *v2,int n)
{
inti;
for(i=1;i<=n;i++)
v1[i]=v2[i];
}

// Generating the matrix of the paths
void gen(int **a,int **d,int n)
{
inti,j,k,*li,*li1,*li2,*li3;
li=alocv(n);
li1=alocv(n);
li2=alocv(n);
li3=alocv(n);
for(i=1;i<=n;i++)
{
extrag(a,li,i,n);
assignv(li1,li,n);
assignv(li3,li,n);
do
{
for(j=1;j<=n;j++)

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

85
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

{
if(li3[j]==1)
{
extrag(a,li2,j,n);
sumbv(li1,li1,li2,n);
}
assignv(li3,li1,n);
}
}while(compar(li1,li3,n) != 0);
for(j=1;j<=n;j++)
d[i][j]=li1[j];
}
}

// Function for finding cycles
int cycles(int **d,int n)
{
inti,exist;
exist=0;
for(i=1;i<=n;i++)
if(d[i][i]==1)
exist++;
return exist;
}

// Sorting in descending order the array of the
// reaching powers
voidsortd(int *p,int *poz,int n)
{
inti,j;
date *pa,aux;
pa=alocvs(n);
for(i=1;i<=n;i++)
 {
pa[i-1].val=p[i];
pa[i-1].poz=i;
 }
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
if(pa[i-1].val<=pa[j-1].val)
{
aux=pa[i-1];
pa[i-1]=pa[j-1];
pa[j-1]=aux;
}
for(i=1;i<=n;i++)
poz[i]=pa[i-1].poz;
}

// Printing the Hamiltonian path
voidafisdh(int *poz,int n)
{
inti;
printf("\n\n Hamiltonian path is : { ");
for(i=1;i<n;i++)
printf(" x%d, ",poz[i]);
printf(" x%d } \n",poz[i]);
}

// Function for implementing Chen’s algorithm for
// finding the Hamiltonian path in directed graphs
// without cycles
voidchen(int **d,int n)
{
int *p,i,j,n1,*poz;
p=alocv(n);
poz=alocv(n);
if(cycles(d,n) == 0)
{
for(n1=0,i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(d[i][j]==1)
n1++;
if(n1 != n*(n-1)/2)
printf("\n\n The graph doesn’t have a Hamiltonian
path. \n");
else
{
printf("\n\n The graph has a Hamiltonian path.
\n\n");
for(i=1;i<=n;i++)
{
p[i]=0;
for(j=1;j<=n;j++)
if(d[i][j]==1)
p[i]++;
}
for(i=1;i<=n;i++)
printf(" The power of reaching vertex x%d is %d
\n",i,p[i]);
sortd(p,poz,n);
afisdh(poz,n);
}
}
else
{
printf(" The graph has cycles \n");
printf(" Yu Chen’s algorithm is not applicable. \n");
}
}

// The main function
int main()
{
intn,m,**a,**d;
char name[30];
FILE *f;
printf("\n File name : ");
fflush(stdin);
gets(name);
if(read_n_m(n,m,name))
{
printf("\n Number of vertices %d \n",n);
printf(" Number of edges %d \n",m);
getch();
a=alocmat(n);
d=alocmat(n);
if(read_graph(name,a))

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

86
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

{
displaym(a,n," Graph adjacency matrix \n");
display_edges(m);
gen(a,d,n);
displaym(d,n," Paths matrix \n");
}
chen(d,n);
}
getch();
}

We will use as inputs for the program graphs
𝐺𝐺 = (𝑋𝑋,𝑈𝑈) and𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1) from figures 1 and 2.
The input file graphdh.txt associated with graph
𝐺𝐺 = (𝑋𝑋,𝑈𝑈)from figure 1 is:

4 5
1 2
1 3
3 2
3 4
4 2

After running the program, we obtain the following
results:

File name : graphdh.txt

Number of vertices 4
Number of edges 5

Graph adjacency matrix

0 1 1 0
0 0 0 0
0 1 0 1
0 1 0 0

Graph G has 5 edges

Edge 1: (x1 , x2)
Edge 2: (x1 , x3)
Edge 3: (x3 , x2)
Edge 4: (x3 , x4)
Edge 5: (x4 , x2)

Paths matrix

0 1 1 1
0 0 0 0
0 1 0 1
0 1 0 0

The graph has a Hamiltonian path

The power of reaching vertex x1 is 3
The power of reaching vertex x2 is 0
The power of reaching vertex x3 is 2
The power of reaching vertex x4 is 1

Hamiltonian path is: { x1, x3, x4, x2 }

The input file graphdh1.txt associated with graph
𝐺𝐺1 = (𝑋𝑋,𝑈𝑈1)from figure 2 is:

4 5
1 2
1 3
2 3
3 4
4 2

After running the program, we obtain the following
results:

File name : graphdh1.txt

Number of vertices 4
Number of edges 5

Graph adjacency matrix

0 1 1 0
0 0 1 0
0 0 0 1
0 1 0 0

Graph G has 5 edges

Edge 1: (x1 , x2)
Edge 2: (x1 , x3)
Edge 3: (x2 , x3)
Edge 4: (x3 , x4)
Edge 5: (x4 , x2)

Paths matrix

0 1 1 1
0 1 1 1
0 1 0 1
0 1 1 1

The graph has cycles.
Yu Chen’s algorithm is not applicable.

CONCLUSIONS
In this paper, the author presented a implementation in C language of Yu Chen’s algorithms for finding the
Hamiltonian path (if one exists) in a directed graph, without cycles, that has a maximum number of 1000
vertices. We briefly presented Yu Chen’s algorithm together with the theory behind it. We have also included

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost/ INDEX COPERNICUS/ OAJI / DRJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys / ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO/ JIFACTOR

87
DOI: 10.21279/1454-864X-17-I2-017
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

the proposed implementation in detail. The paper discusses an example which is solved not only manually,
but also programmatically by using the program developed by the author. Yu Chen’s algorithm is applicable
only for directed graphs that don’t have cycles.
From the large spectrum of future work we will enumerate:

- The development of an algorithm for directed graphs with cycles
Writing an extended program for graphs with cycles.

BIBLIOGRAPHY
[1] Acu, A.M., Acu, D., Acu, M., Dicu, P., Matematiciaplicateîneconomie – Volumul I, Editura ULB, Sibiu,
2001.
[2] Băutu, A., Vasiliu, P., Bazeleprogramăriicalculatoarelor, Ed. A.N.M.B., Constanţa 2009.
[3] Berge, C., Teoriagrafurilorşiaplicaţii, EdituraTehnică, Bucureşti, 1971.
[4] Kernigham, B., Ritchie, D., The C programming language, Prentice Hall,1975.
[5] Tomescu, I., Combinatoricăşiteoriagrafurilor, EdituraUniversităţii din Bucuresti, 1990.
[6] Vasiliu, P., Algorithm for determining the minimum value of all subgraphs with k vertices, Scientific
Bulletin. Volume XIX-2016-Issue 2, ISSN 1454-864X, „MirceacelBătrân” Naval Academy Press, pag. 564-
573.
[7] Vasiliu, P., Bǎutu, A., Programareacalculatoarelorînlimbajul C, Ed. Europolis, Constanţa, 2006.

