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Abstract:  Galloping is a self-excited aeroelastic oscillation of slender structures, such as high voltage 
overhead lines or tall buildings, characterized by large-amplitudes and low-frequencies. The movement of 
the excited structure develops commonly transverse to the wind but other translational or rotational motions 
have been observed on the field. In the paper, a two-dimensional weakly nonlinear model of an iced 
suspended cable, having as degrees-of-freedom the vertical plunge and the rotation around the elastic axis, 
is introduced. The sysem is excited by a uniform wind and susceptible to galloping. A modified variational 
iteration method is employed to obtain a system of four amplitude-frequency modulation equations, that 
yields both the transient and the steady-state behaviors. The influence of wind speed on the initiation of 
galloping as well as on the amplitude of oscillation is analyzed in far-from resonance conditions. The 
theoretical results derived in the paper have been applied to a typical section model and the numerical 
results are contrasted with those provided by the direct integration of equations of motion. 
Keywords: Galloping, Two-dimensional model, Modified variational iteration method 
 
INTRODUCTION 
Galloping ia a flow-induced oscillation of a lightly 
damped structures having an aerodinamically 
unstable cross-section. It affects mainly the iced 
conductors of the power transmission lines, the 
tall and slender buildings and the bridge decks. 
Usually, the affected structure performs a one-
degree-of-freedom motion at nearly its natural 
frequency, whih is in the order of 1 Hz. Galloping 
occurs even at low flow speeds and the 
explanation consista in the presence of a negative 
aerodynamic damping, meaning that the 
aerodynamic force performs positive work on the 
structure. Oscillations can exhibit high amplitudes 
involving serious implications for the structure’s 
safety. For example, in the case of an iced 
conductor the amplitudes range from 0.1 to 1.0 
times the sag of the span. This may cause 
flashover and large additional loading stress on 
insulators, support hardware and tower 
components, raising the risk of mechanical failure.  
Since 1932, when den Hartog [1] introduced a 
condition for the vertical galloping of iced 
conductors to appear, a lot of theoretical research 
and experimental tests have been conducted 
aiming of understanding, controlling and 
preventing galloping. Different models, with finite 
or infinite number of degrees-of-freedom, have 
been developed [2-6]. Between them, a significant 
role in the galloping study has had the two-
degrees-of-freedom vertical and torsional 
galloping mechanism developed by Nigol and 
Clarke [7].  
In the next section we present briefly their model 
and derive the equations of motion. Because they 

are weakly nonlinear there exist appropriate 
methods, including Krylov-Bogoliubov method or 
Multiple time scales method, to obtain 
approximate analitycal expressions for their 
periodic or quasi-periodic solutions [8, 9]. In the 
paper, we employed instead a modified variational 
iteration method (see the third section) to derive 
the so-called amplitude-frequency modulation 
equations, that describe both the transient and 
steady-state behaviors in far-from resonance 
conditions. Finally, the approximate solutions 
derived in the fourth part are contrasted with those 
provided by the numerical integration and the 
conclusions are formulated. 
TWO-DEGREES-OF-FREEDOM MODEL FOR 
GALLOPING. SHORT DESCRIPTION 
Consider a slender structure (an iced cable for 
example) having a cross-section of an arbitrarily 
shape exposed to a horizontal wind field of 
constant velocity ∞V


(see Figure 1).  

 

 
 

 
Figure 1. Ice – accretion on cables 

 
The structure is reported to a Cartesian frame 
having y axis perpendicular to the wind direction 
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and has two-degrees-of-freedom, specifically the 
vertical plunge y and the torsional angle θ around 
the elastic axis (see Figure 2). 
 

y

θ  

yk

O
θk

 
 
Figure 2. A two-degrees-of-freedom model for galloping 
 

Let m and OJ be the body mass and the moment 
of inertia per unit length. Withal, the vertical and 
torsional stiffness coefficients are denoted by yk  

and θk , while yc and θc  stand for vertical and 

torsional damping coefficients (the dampers are 
not represented in the figure). The structure will 
oscillate according to the following system of 
equations 
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Here, yF  and M signify the projection of the 
aerodynamic force on y directionand the 
aerodynamic momentum, respectively. They 
depend on the wind’s angle of attack, α , as 
follows 
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where aρ  is air density, d a suitable cross-

section’s reference length and yC , MC the 

aerodynamic coefficients. According to the field 
measurements, the last quantities can be 
expressed by cubic polynomials in angle α  
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where 1R  is another reference length of the 
cross-section [7]. From the above relations, one 
gets 
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where 
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corresponding natural frequencies. With help of 
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the system (2) is rewritten in the non-dimensional 
form 
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All the terms in the right sides of system (3) are 
small compared with those of the left sides, so the 
dynamical equations (3) are weakly nonlinear. To 
highlight this, one uses the small parameter 

1<<ε in rewritting the system (3) as 
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θθθθ ηεηηεηξεξξεξ ˆ,ˆ,ˆ,ˆ ==== yyyy . 
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VARIATIONAL ITERATION METHOD.  
BASIC IDEA 
Consider a general nonlinear system as follows 
 

( ) )())(()( ttt guNuL =+                                      
(5) 
 

where L and N are linear and nonlinear oerators 
respectively, g is a known continuous function and 
t is the time. The basic idea of the method is to 
construct a correction functional for the system (5) 
in the form 
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where λ  is a general Lagrange multiplier that can 
be identified optimally via the variational theory, 

nu is the approximate solution of order n and nu~  

denotes a restricted variation, i.e 0~ =nuδ  [10]. 
Thus, for the equation 
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the Lagrange multiplier results as 
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Having λ  determined and using a selective 
zeroth  
approximation 0u , several approximations 

1, ≥nnu  can be determined with iterative formula 
(6). Finally, the solution of problem (5) is given by 
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SOLUTION FOR SYSTEM (4) BY A MODIFIED 
VARIATIONAL ITERATION METHOD 
 

The zeroth order approximations for the solution 
of (4) are chosen considering a small deviation 
from the case 0=ε  
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The amplitudes θaa y ,  and the total phases 

θψψ ,y  are supossed to be slowly varying in 
non-dimensional time τ  [11]. That is 
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Before applying the recursive formula (6) one 
needs to differentiate twice with respect to τ  the 
functions ( )τ0y  and ( )τθ 0 . Doing this and 

retaining only the terms of ( )εΟ  one has 
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First corrections for the zeroth order 
approximations ( )τ0y  and ( )τθ 0  are obtained by 
selecting n = 0 in (6). That yields 
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Let us concentrate on the equation (10). After 
some algebra, it becomes 
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Functions like ( ) yyaA ψsin2−  or ( ) yyaA ψsin2−  
provide the so-called secular terms , because they 
increase slowly in time and became important 
after large intervals of time. Indeed, 
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with yϕ  a constant. Because galloping is a 
periodic oscillation, one needs to avoid the 
secular terms or, with other words, to cancel the 
coefficients of yψsin  and yψcos .  
These conditions produce the following two 
equations for findind ( )yaA  and ( )yaB  
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Solving them and replacing ( )yaA  and ( )yaB  in 
(9) one obtains 
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Doing the same for the equation (11) results in 
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The equations (12) and (13) are called amplitude-
frequency modulation equations and describe 
both the transient and the steady state motions of 
the structure. The last are obtained by setting 

=
τd
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τ
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d
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behaviors: 
( I ) Equilibrium : 0== θaa y                                     
(14) 
 

( II ) Periodic plunge oscillation: 
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( III ) Periodic torsional oscillation 
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( IV ) Quasi-periodic plunge-torsional oscillation 
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Which of these behaviors is realized in a practical 
situation depends on the non-dimensional wind 
speed and on the initial conditions [9]. The 
existence and stability of solutions (I) to (IV) can 
be established by studying the signs of the real 
parts of the eigenvalues for the Jacobian matrix 
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A solution is stable if all the eigenvalues of J have 
negative real parts. The bifurcation from one 
solution to another depends on the parameters 
 

220 
DOI: 10.21279/1454-864X-17-I1-034 
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 1 
The journal is indexed in:  PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI / 

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access / 
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR 

y

y
y

aU
U

ξ
η

2
1=  , 

θ

θ
θ ξ

η
r

bRUU
2

11=  (19) 

 

For a given structure yyRrba ηξξ θ ,,,,,, 111  and 

θη  are fixed, so the behavior of that structure will 
depends entirely on the wind speed. Thus, 
solution (I) is stable if 1−>yU  and 1−>θU . It 

bifurcates to solution (II) if 1−<yU  and towards 
solution (III) if  

1−<θU . In their turn, solutions (III) and (IV) lose 
their stability and transform into solution (IV) if the 
conditions  
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are fulfilled, respectively. 
To complete the solution (8) one needs to 
determine Y and Θ . In reference [11] the authors 
proposed a constant sequence 0, ≥nnu  for the 
approximate solution of (5), meaning the only one 
iteration will solve the problem. In our case, that 
involes 01 yy =  and 01 θθ = .  
If we restrict our attention to the variable y , it is 
sufficient for the function τ(Y ) to be a solution of 
differential equation 
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Its solution is discussed in the next section for a 
particular case. 
NUMERICAL SIMULATIONS 
In the first part of this section, the approximate 
solution (8) with 0=Θ=Y  is contrasted with its 
counterpart obtained by direct numerical 
integration of equations (3). The required 
parameters have been selected from reference [7] 
and they come from wind tunnel tests performed 
on a typical angle section model. Their values are 
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It follows that UU y 24.0−=  and UU 0342.0−=θ , 

so the equilibrium state is stable for 1667.4<U .  
Figure 3 presents a comparison between 
analytical and numerical solutions for 1=U and 
the initial conditions 

( ) ( ) ( )0,5.0,0,5.0)0(,0,0),0( =







τ
θθ

τ d
d

d
ydy  

The structure performs plunge and torsional 
oscillations with decreasing amplitudes and 
periods rTT y /2,2 ππ θ == . It is worth noting the 
excellent agreement between the two solutions.  
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Figure 3. The comparison between the time series 
solutions ( ) dy /τ  and ( )τθ  obtained with exact and 
approximate equations (3) and (8) for 1=U . The red 
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circles and magenta stars stand for approximate 
solution. 
 
The torsional motions vanishes faster than the 
plunge motion, as illustrated in Figure 4. 
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Figure 4. Dissipation of an initial disturbance for 
1=U proves that solution (I) is stable 

 
By increasing the non-dimensional speed at 

10=U , then 1342.0,14.2 −>−=−<−= θUU y  and 
the structure evolves into a plunge oscillation with 
the steady amplitude 5527.2=ya . Figure 5 
shows, on the one hand, extracts of the 
transitional and stationary phases of the 
translational motion and, on the other hand, a high 
accuracy of the zeroth order approximations (8). 
The same is true for the rotational motion, as 
depicted in Figure 6. 
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Figure 5. The comparison between the time series 
solutions ( ) dy /τ  obtained with exact and approximate 

equations (3) and (8) for 10=U . The red dots are for 
solution (8): (a) transitional phase; (b) stationary phase 

 
The transition from the initial displacement ( )0y  
toward the steady-state is rather slowly, beeing 
necessary almost 1,000 units of time (see Figure 
7). In fact, the closer is the speed U to the 
bifurcation point 1617.4=bU  the larger is the time 
required to reach the stationary behavior [9]. 
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Figure 6. The comparison between the time series 
solutions ( )τθ  obtained with exact and approximate 
equations (3) and (8) for 10=U .The approximate 

solution is reported only by its amplitude ( )τθa (the 
magenta interrupted curve) 
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Figure 7. Transition toward the stationary state for 
10=U  

The theoretical results derived above predict that 
the periodic plunge solution (15) will lose its 
stability at 2398.29=U  and a periodic torsional 
oscillation, described by (16), will appear instead.  
It is worth to remember that the amplitude-
frequency modulation equations have been 
obtained by assuming no secular terms in (10) 
and (11). Such a presumption implies bounded 
solutions. For the analized cross-section model 
the numerical solution becomes unbounded for 

9.13max ≅U  so any comparison between solutions 
of (3) and (8) above this limit has no physical 
meanings. In conclusion, after an initial excitation, 
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the studied structure will come to rest if bUU<  or 
will perform a plunge oscillation for ( )max,UUU b∈  
Table 1 reports the approximate and numerical 
amplitudes ya and the relative errors ERR 
between them, recorded after 3000=∆τ units of 
time. The errors of estimation, defined in (21), are 
founded to be limited to less than 5% for all the U 
values, excepting the small region near maxU . 
This is an interesting result, given that it refers to 
the zeroth order approximation (without Y). Even 
more, the two solutions remain extremely close 
even after a long period of time, as Figure 8 
proves. 
 

( ) ( )%/100 num
y

appx
y

num
y aaaERR −⋅=  (21) 

 

Table 1. The aproximate and numerical amplitudes ya  
for different wind speeds U 

 
U appx

ya  num
ya  ERR (%) 

4.6 0.4719 0.4700 0.40 
5 0.6823 0.6880 0.83 
6 1.1085 1.1498 3.59 
7 1.4885 1.5434 3.56 
8 1.8508 1.9004 2.61 
9 2.2043 2.2250 0.93 
10 2.5526 2.5161 1.45 
11 2.8976 2.7705 4.59 
12 3.2404 2.9836 8.59 
13 3.5815 3.1504 13.65 

13.8 3.8535 3.2461 18.46 
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Figure 8. The closeness between the analyical and 
numerical solutions is kept even after a long period of 

time 
 
Theoretically, the above reported results may be 
improved by including the term ( )τε Y . For the 
speed U range where there exist a numerical 
solution, the long-term behavior of the structure is 
characterized by 0=θa . The only term in the right 
hand side of the equation (20) which may be of 
some importance is the first one. The truncated 
equation 
 

yy
y a
U
a

Y
d

Yd ψ
η

τ
3sin

4
ˆ

33
2

2

−=+                           

(22) 
 

has the solution ( ) yy
y a
U
a

Y ψ
η

τ 3sin
32
ˆ

33= , such as  

 

( ) yy
y

yy a
U
a

ay ψ
η

ψτ 3sin
32

cos 33+=                     

(23) 
 

with ( ) φφττψ ,+= some constant. For our 
particular cross- section the ratio between the 
amplitudes of the two terms in (23) is 

2000734.0 ya
U

 

As an example, if U = 10 than the ratio is 2 091, 
meaning that nothing relevant is gaining if the 
term ( )τε Y  is added in the approximation for the 
plunge oscillation. 
 

Conclusions 
In the paper, a two-degrees-of-freedom model for the aero-elastic galloping of aslender structure in far-from 
resonance condition, excited by a transversal wind flow, has been analysed by means of a modified 
variational iteration method. The degrees-of-freedom are the vertical plunge and the torsional angle around 
the elastic axis.The method’s algorithm provided a system of four differential equations for the amplitudes 
and frequencies of the zeroth order solutions, applicable to both the transient and stationary stages. Four 
possible behaviors of the system have been deduced and they can be either an equilibrium state, a periodic 
plunge oscillation, a periodic torsional vibration, or a motion on a two-dimensional torus. Using a typical 
cross-section of an electrical transmission line and the wind speed as a parameter, we founded an excellent 
agreement between the analytical solution, delivered by the variational iteration method, and its numerical 
counterpart. There exist a minimum (critical) wind speed required for the galloping’s initiation. Below it any 
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initial displacement is cancelled by damping mechanism. Above the critical wind speed, the analyzed cross-
section performed just a plunge oscillation, in full agreement with the theoretical results. The torsional 
oscillation and the coupled plunge-rotational vibration were not found in the simulations, because the 
numerical scheme became unstable at some level of the wind speed. For other structures, it is conceivable 
that these behaviors may be present. 
 
Bibliography 
 
 

[1] J.P Den Hartog,Transmission Line Vibration due to Sleet,Transactions of American Society of Electrical 
Engineers, vol. 51, p. 1074-1086,1932. 
[2] M. Novak,Aero-elastic galloping of prismatic bodies, Journal of the Engineering Mechanics Division, vol. 
98, p. 27-46, 1972. 
[3] R.D. Blevins, W.D. Iwan, The galloping response of a two-degree-of-freedom system, Journal of Applied 
Mechanics, vol. 41, p. 113-118, 1974. 
[4] P. Yu, A.H. Shah, N. Popplewell, Inertiallycoupled galloping of iced conductors, Journal of Applied 
Mechanics, vol. 59, p. 140-145, 1992. 
[5] P. Yu, Y.M. Desai, A.H. Shah, N. Popplewell, Three degrees-of-freedom model for galloping. Part I: 
formulation, Part II: solutions, Journal of Engineering Mechanics, vol. 119, p. 2404 – 2448, 1993. 
[6] B.W. Van Oudheusden, Aerodynamic and damping effects in the rotational galloping of arectangular 
cross – section, Journal of Fluids and Structures, vol. 14, p. 1119 – 1144, 2000. 
[7] O. Nigol, G.J. Clarke, Conductor galloping and control based on torsional mechanism, IEEE Power 
Engineering Society Meeting, New York, 1974. 
[8] D. Deleanu, One Degree-of-Freedom non-linear model for galloping’s study, Analele U.M.C. nr. 5, p. 139-
142, 2004. 
[9] D. Deleanu, Modelling the growth of wind-induced oscillations in overhead lines. Non-resonant case, 
Constanta Maritime University Annals, vol. 24, p. 207-212, 2015. 
[10] J.H. He, Variational Iteration Method – a kind of non-linear analytical technique: Some examples, 
International Journal of Non-Linear Mechanics, vol. 34 , no. 4, p. 699-708, 1999. 
[11] V. Marinca, Application of variational iteration method in weakly nonlinear oscillators, Proceedings of the 
X-th Conference on mechanical vibrations, Timisoara, Romania, 23-24 mai 2002. 
 

224 
DOI: 10.21279/1454-864X-17-I1-034 
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. 


