
Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 1
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

CENTRALIZING APPLICATION CRASH INFORMATION IN SDLC

Laurentiu Alexandru DUMITRU
Eng., Ph.D. (c), Military Technical Academy, 39-49 George Cosbuc Bvd., Bucharest, Romania,
dlaur@nipne.ro

Abstract: During the testing phase in the Software Development Lifecycle of software applications,
implemented safeguards may not catch and treat all possible errors due to various deployment scenarios.
When a crash occurs on a client's computer it is more difficult to identify the cause without a proper
automated crash reporting framework. Modern operating systems have built-in mechanisms for error
reporting but there are also third party cross-platform libraries. With the help of such tools and a
centralization system it is possible to implement an efficient problem analysis procedure, when the software
runs on a client's computer.
Keywords: error reporting, crash dump, SDLC

 I. Introduction

 In the current ever growing informational
society, software plays a fundamental role on
every type of electronic hardware. It has evolved
from being distributed off-line to automatic,
transparent and even autonomous upgrades and
fixes. Although all phases in the Software
Development Life-cycle (SDL) process are
important, a critical part is represented by the
actual running on client machines, which, typically
is among the last phases. Every remote client has
a particular environment which can have different
Operating Systems (OS) and patches, different
anti-viruses or firewalls and any other technical
peculiarities.
 During the implementation phase, the
software is usually designed with unexpected
error and exception handling. When the software
undergoes evaluation and testing, during the
Quality Assurance and testing phase, many
running scenarios and execution environments
are used to spot bugs in the application. Given the
vast degree of heterogeneity on remote clients it
is almost impossible to imagine and test all the
possible situations in which the client application
may run.
 When an application crashes on a remote
client machine, it is very important for the
developers to have a sustainable method of
retrieving enough information about the crash, in
order to track and fix the bug that caused it. When
applications were ran on systems that have no
Internet connectivity, many years ago, this was a
daunting task to accomplish. In present times,
most clients have Internet access, at least
periodically, if not permanently. This makes it
easy to transfer crash-related information over a
secure channel from a remote client to a central
collecting service.
 This paper analyzes how an automated
crash reporting service can be developed, what

tools are available to software developers in order
to implement automatic error reporting on modern
operating systems and how should the remote
clients access the error collecting framework. The
actual bug tracking process is OS and
programming language specific, but the collection
process can be applied to most scenarios.
 Given the fact that after a critical error, the
application, usually, is no longer active, crash
detection must be implemented with the aid of an
external component. Most operating systems
provide native application programming interfaces
to such services but there are also third party
libraries which can be used. Taking into account
an automated crash reporting process from the
beginning of the development leads to easier
problem fixing and better customer support for the
final product.

 II. Related work

 In [1], Kirk Glerum et. al, talk about
debugging applications that are distributed to
tens of millions of clients, with emphasis on
collecting with the Windows Error Reporting
(WER) technologies. Apart from describing how
the technology works, the paper also describes
how the Microsoft team manages data collection,
sorting, user response and statistical data.
 Following the WER’s model, several other
projects exists. Apple provides the CrashReporter
facility [2], Google provides its multi-platform
system – BreakPad [3].
 Other reporting systems have been in
used [4],[5], but many of them were replaced
either with native tools or with alternatives that
have larger support communities.
 User anonymity is always an important
issues. Castro et al. [6] propose a method for
using trigger-generating variables instead of
memory dumps. This approach is more processor
intensive on the client machine. Instead of

397
DOI: 10.21279/1454-864X-17-I1-064
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

mailto:dlaur@nipne.ro

Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 1
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

providing an actual dump, it will provide a way to
reproduce that particular event on an analysis
machine where the memory contents are filled
with arbitrary data, instead of disclosing data from
the client’s machine
 Another method for anonymizing user
data is proposed by Scrash [7]. It is a technique
that excludes sensitive memory address from the
dumps. It works by labeling sensitive information
at source code level with the cost of a small
execution overhead due to the fact that extra
symbols are inserted.
 Apart from the technical data collection,
the bug report itself is an important asset to the
debugging team. In [8] N. Bettenburg et. al.,
analyze withing the users of Apache, Eclipse and
Mozilla what information is needed by the
developers and what they actually get from the
users.

 III. Overall design

 The crash collecting architecture can be
based on a client-server model. In this case, the
client is the crash reporting service running on a
remote client machine and the server is the entry-
point of the error-collecting infrastructure. Given
the fact that a crash report may include a user's
confidential data, in the memory dump, it is
necessary to have an encrypted communication
channel over which the collected information is
transmitted. The actual implementation varies.
Windows Error Reporting submits information only
for Microsoft products and developers that use its
services must deploy their own transfer method.
On the other hand, third party frameworks may
directly provide this facility.
 A major architectural decision is whether
to have anonymous data submitted or to include
user specific information that may link a certain
crash dump to a particular user. The common
approach is to have various environment
informations collected, such as OS version, kernel
version or installed/running applications, which
might help in the debugging process but can not
be used to identify a particular user. If, for
example, the user gives its consent to be
identified, the debugging team may directly
communicate with the user in order to notify him
about the status of the problem and even submit
particular patches for exceptional situations.
 Typically a crash takes place when
certain conditions are met. These may include
invalid processor instructions, attempt to access a
memory address that is not allocated to the
current process, attempt to read or write an
address that represents a hardware device,
attempt to write past the allocated space of a

buffer or triggering unhandled exceptions. If the
application is not a part of the operating system,
the crash may affect only the user's activity. If the
application is a part of the operating system, runs
with administrative privileges or interacts with OS
services, a crash may lead to unrecoverable
system errors, kernel panics or system hangs. In
these latter cases an error recovery service may
not have time to be executed, since the system is
blocked, thus making the debugging process

much harder. Modern operating systems have
built-in error collecting mechanisms for kernel
faults and, usually, normal application will not
trigger faults in the kernel.

 Current multi-tasking operating systems
run each user application in separate virtual
address spaces. This approach allows isolation in
case of a single application crash. After the
detection of the crash, the system can launch a
registered error collecting helper. It is this helper
that will collect the necessary information and
submit it to the collecting server (Fig.1). If the
application is designed with personalized support,
the helper may identify itself and then submit the
information. After the information has been
submitted, the user receives a confirmation e-mail
that the situation has been acknowledged and
he/she will be contacted with regards to the
evolution of the bug-fixing process. If the
information is submitted anonymously, the users
will be announced when a new version of the
application is available for download.

 The collecting infrastructure would,
minimally, include an error collecting server, an
application debug symbol database, a dump
database and a bug tracking service. The

Figure 1

398
DOI: 10.21279/1454-864X-17-I1-064
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 1
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

collecting server receives the dumps which are
initially stored in the dump database along with
user identification, if provided. The next step is
identifying the associated symbol files with the
received files. The dump is then corroborated with
the symbol files in order to have a report that can
be processed by a member of the debugging
team. Usually this report contains stack frame
information, thread state information, CPU
registers but can also actual memory contents, if
the helper was configured in that way. In most
cases, actual memory contents are not included
because they are not relevant to crash analysis,
have large sizes and may contain user sensitive
information.

 IV. Implementation

 On Microsoft Windows based system, the
Windows Error Reporting service is the native tool
that can help catch and collect information when
an application crashed. According to Microsoft [1],
fixing 20 percent of the top-reported bugs can
solve 80 percent of customer issues and
addressing 1 percent of the bugs would address
50 percent of the customer issues. These
numbers show how important proactive bug-fixing
can be, in order to have good customer support.
 Apple provides the Crash Report Service
[2] which allows the developers to download crash
reports from application that were distributed and
installed on client machines through the store.
Submitting the collected crashes is conditioned by
the confirmation of the user to share crash data
with the application's development team. One
feature is the TestFlight beta testing with which
the final clients can download beta versions of the
applications before they are released. This implies
automatic error reporting.
 On Linux systems, the Automated Bug
Reporting Tool [9], which is natively included on
Fedora and Red Hat-derived distributions, catches
core dumps from user applications and sends the
reports to bug-tracking systems.
 When developing cross-platform
applications, having multiple collecting methods
and crash dump formats can prove to be
inefficient. In such a case, the development team
may want to implement a custom collecting
service or use a readily available one, such as
Google Breakpad [3]. This approach assures
cross-platform homogeneity of the crash dumps
and a lighted storage and collecting service.
 Crash dumps must have a well defined
format and record as many information as
possible. Several crash dump formats exist but
their interpretation differs, therefore are not
compatible. Google’s Breakpad has chosen the

Minidump format, which is endorsed by
Microsoft’s error reporting service. Dump must
contain at least CPU context, thread information
(memory regions, context for each thread), the
Process Environment Block (PEB) for the process
and a list of external code that was present at the
time the application crashed. In a normal situation,
a dump is the result of a crash, but one can trigger
a manual dump in order to catch a snapshot of the
application context at a certain point in time.
 Each minidump contains a series of
streams and each stream contains a particular
type of data that can be used for analysis.
Minidumps can be of many types. The most
common is the "normal" one which contains
thread and module information, CPU context and
other system information. The "full" type contains
all the memory segments that were in use by the
process. The latter one implies collecting sensitive
information. Since the format can be regarded as
a container for several types of stream, extending
the format to accommodate customization is a
straightforward task. The main minidump structure
is defined in DbgHelp.h (windows):
typedef struct _MINIDUMP_HEADER {
ULONG32 Signature;
ULONG32 Version;
ULONG32 NumberOfStreams;
RVA StreamDirectoryRva;
ULONG32 CheckSum;
union {
ULONG32 Reserved;
ULONG32 TimeDateStamp;
};
ULONG64 Flags;
} MINIDUMP_HEADER, *PMINIDUMP_HEADER;
The base RVA of the minidump directory. The
directory is an array of MINIDUMP_DIRECTORY
structure:
typedef struct _MINIDUMP_DIRECTORY {
ULONG32 StreamType;
MINIDUMP_LOCATION_DESCRIPTOR Location;
} MINIDUMP_DIRECTORY;
typedef struct
_MINIDUMP_LOCATION_DESCRIPTOR {
ULONG32 DataSize;
RVA Rva;
} MINIDUMP_LOCATION_DESCRIPTOR;
The structure itself does not specify any source
code or function reference. A specialized parser
corroborates the information from the dump with
the symbol files, after matching a particular
application version with the appropriate symbol
file. Additional symbol files for external
components such as DLLs or shared libraries may
be loaded if needed. Analysis of minidump files is
done with Microsoft Windows Debugger (WinDbg)
and can start with a simple !analyze -v command,

399
DOI: 10.21279/1454-864X-17-I1-064
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 1
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

in order to get detailed information about the
dump.
 The Windows Error Reporting API
provides many functions that can create custom
reports, filter conditions and submit crash dumps.
A handler DLL must be registered in the system
registry (HKLM SOFTWARE\ Microsoft\ Windows\
Windows Error Reporting) before it can be used.
The function responsible for notifying the system
that it should call an external helper in case of a
crash is defined as:
HRESULT WINAPI
WerRegisterRuntimeExceptionModule (
In PCWSTR pwszOutOfProcessCallbackDll,
_In_opt_ PVOID pContext);
and must be called before the application starts its
actual work. The full path of the registered DLL
must be provided as first argument and an
arbitrary information can be passed as the second
one. The DLL must implement three callback
entrypoints:
1. OutOfProcessExceptionEventCallback
2.OutOfProcessExceptionEventSignatureCallback
3.OutOfProcessExceptionEventDebuggerLaunch
Callback
The first one is used to determine whether the
helper confirms that it processes the crash or not.
It is used to filter out known crash conditions
(such as manually snapshots) and to gather more
information about the situation. The second
function can be called by WER multiple times in
order to get report parameters. The third function
is used to launch a particular debugger with its
specific parameters, but it is not necessary to
actually launch one.

 To get the minidump, it is necessary to
call the specific function, inside the second
callback of the handler DLL:
HANDLE f = CreateFileW (Path,
GENERIC_READ | GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, 0, NULL);
MiniDumpWriteDump(pExceptionInformation-
>hProcess, GetProcessId(pExceptionInformation-
>hProcess), f, MiniDumpNormal,NULL, NULL,
NULL);
This example will write a normal minidump to a
specified file. After its completion it may be sent to
the collecting service.
 Using Breakpad is similar to the above
procedure. An application must be linked against
the breakpad library, provide a callback and
register the exception handler:
static bool dumpCallback (const google_breakpad
:: MinidumpDescriptor& descriptor, void* context,
bool succeeded) {
 //send file
 return succeeded;
}
google_breakpad::MinidumpDescriptor
descriptor("/opt/dumps");
google_breakpad::ExceptionHandler
eh(descriptor, NULL, dumpCallback, NULL, true, -
1);
The above code instructs the library to use a
certain directory for dumps, registers the
dumpCallback function to be called after a dump
is generated and calls the above registered
function. Inside the callback an upload procedure
must be present in order to submit the dump to
the centralized error collecting infrastructure.

Conclusions
Good customer support and small bug-fixing times leads to better applications. Having a proactive error
collecting policy can help the development team to quickly identify and repair software flaws. In many cases
this is done without user interaction and can help minimize a problem's impact. If, for example, a single
problem is reported and treated quickly, the same problem will not manifest on future customer's machines
or on present ones that have not stumbled upon the crash conditions. This automated collecting process
alongside with an automated update mechanisms should be included in the Software Development Life-
cycle Process from the start.
Modern operating systems already provide built-in tools for such features, but external libraries that
implement such functionalities exist under open-source and commercial licenses. These libraries are usually
well-suited for cross-platform deployments when crash dump format homogeneity is needed.
Confidentiality of a client's data is achieved by collecting non-sensitive technical information and by
transmitting the collected information over secure transmission channels with encrypted data. Furthermore,
the reports are submitted anonymously. There are exceptions in which sensitive information or personal
identification is used, but these cases require special circumstances and the user's approval.
The error collecting infrastructure, apart from the crash-related information storage, can be used to provide
user feedback and generate reports about bug-fixing times, process or module-related statistics with regards
to crash occurrences, thus enabling the development team to identify flawed algorithms, human coding
errors and resource/performance-related issues. With this information, future application versions can be
improved.

400
DOI: 10.21279/1454-864X-17-I1-064
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XX – 2017 – Issue 1
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

Bibliography
[1] Glerum, Kirk, et al. "Debugging in the (very) large: ten years of implementation and
experience." Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM,
2009.
[2] Apple Inc., CrashReporter. Technical Report TN2123, Cupertino, CA, 2004.
[3] Google Inc. Breakpad. Mountain View, CA, 2007, http://code.google.com/p/google-breakpad/.
[4] Berkman, J. Bug Buddy. Pittsburgh, PA, 1999, http://directory.fsf.org/project/bugbuddy/.
[5] Mozilla Foundation. Talkback. Mountain View, CA, 2003, http://talkback.mozilla.org.
[6] Castro, M., Costa, M. and Martin, J.-P. Better Bug Reporting With Better Privacy. In Proc.of the 13th Intl.
Conference on Architectural Support for Programming Languages and Operating Systems, pp. 319-328,
Seattle, WA, 2008.
[7] Broadwell, P., Harren, M. and Sastry, N. Scrash: A System for Generating Secure Crash Information. In
Proc.of the 12th USENIX Security Symposium, pp. 273-284, Washington, DC, 2003.
[8] Bettenburg, Nicolas, et al. "What makes a good bug report?." Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering. ACM, 2008.
[9] Zdenek Prikryl Moskovcak, Automatic Bug Reporting Tool,https://fedoraproject.org/wiki/Features/ABRT

401
DOI: 10.21279/1454-864X-17-I1-064
© 2017. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

http://code.google.com/p/google-breakpad/
http://directory.fsf.org/project/bugbuddy/
http://talkback.mozilla.org/

