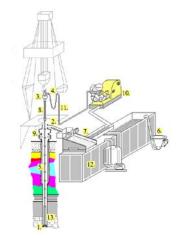
GUI INTERFACE TO PERFORM FUNCTIONAL CALCULATION OF THE SHALE SHAKER, CLEANING ELEMENT OF THE SYSTEM OF DRILLING MUD

Maria Georgeta POPESCU¹ Georgeta Claudia NICULAE² Ioana Gabriela STAN³ Iuliana Veronica GHETIU⁴

¹Assoc. Prof. U.P.G. Ploiesti, FET Departament
 ²Lecturer, PhD U.P.G. Ploiesti, INM Department
 ³Assist lecturer, PhD U.P.G. Ploiesti, FET Departament
 ⁴Assist lecturer, PhD, U.P.G. Ploiesti, FET Departament

Abstract: This paper describes the execution and usage methodology offered by MATLAB facilities, by designing a GUI graphical interface used to calculate the dimensional elements of V belt transmission and the perturbing force necessary to achieve the vibratory motion. The paper also covers all stages of spring calculation, as well as cinematic calculation notions concerning the perturbing system.


Keywords: GUI graphical interface, shale shaker, drilling mud

The types and quantities of cuttings present in drilling mud system have major role in the fluid's properties as: density, viscosity, filter cake quality and filtration control. Cuttings removal is one of the most important aspects of mud system control, because it has a direct bearing on drilling efficiency.

Cuttings removal on the rig is accomplished by one or more of the following basic methods:

- screening;
- hydrocycloning;
- centrifugation;
- gravitational settling.

A diagram of a typical mud circulating system, including various solids-control devices, is shown in figure 1:

Fig. 1. Drilling fluid circulating system

1 –drill bit ; 2 – flow line; 3 – crown block; 4 – vibrating hose; 5 – drill pipe; 6 – equipment for drill mud preparation; 7 - equipment for drill mud separation of mud pit; 8 – Kelly; 9 – BOP's equipment; 10 – mud pump; 11 – standpipe; 12 - mud tank; 13 – drill collar.

The most important solids-control devices are shale shakers.

A shale shaker is a vibrating screen separator used to remove drill cuttings from the mud. The basic shale shakers types used are:

© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

- Circular-motion shaker
- Elliptical-motion shaker
- Liner-motion shaker.

Shale shaker performance is affected by the type of the motion, stroke length of the deck and the rotary speed of the motor.

Shale shakers kave a back tank to receive mud from the flowline. The mud flows over a weir and is distributed to the screening surface. The screen is placed over a basket that has a vibratory motion. The basket is mounted on helical springs. Below the basket is used a collection bed to channel the screen underflow to the active system.

Shale shakers are the most important and easiest-to-use solids-removal equipment. A diagram of a typical shale shaker is shown in figure 2.

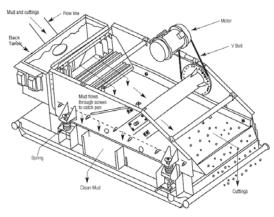


Figure 2 Shale shaker's diagram

Figure 2 presents the active elements of a shale shaker: electric motor, transmission V-belts, shaft vibrator that transmits vibrations to the hopper mounted on helical springs.

The study of this paper is based on sizing V-belt transmission.

Initial data for design are:

- computing power to the drive shaft
- nominal power transmitted by a V-belt
- RPM of V-belt's running wheel
- RPM of V-belt's driven wheel
- driven wheel's diameter
- efficiency of the transmission
- functional ratio of transmission

The graphical interface build in MatlabGUI(figure 1) is using predefined objects available in Matlab, such as:

- 5 objects type Edit Text
- 24 objects type Static text
- 1 object type Push Button
- 1 object typePopup-ul menu

- length ratio
- Winding ratio
- V-belts no. ratio

Shall be calculated:

transmission ratio:

$$i = \frac{n_1}{n_2}$$

- diameter drive gear: $D_{-2} = i \cdot D_{-4}$

the average diameter pulley:

$$D = \frac{D_{p_1} + D_{p_2}}{D}$$

$$+ \frac{\left[0,25 \cdot L_{p} - 0,393 \cdot (D_{p1} + D_{p2})\right]^{2}}{-0,125 \cdot (D_{p2} + D_{p1})^{2}}$$

- the angle of the branches Vbelt: $\gamma = 2 \cdot \arcsin \frac{D_{p_2} - D_{p_1}}{24}$
- winding wheel angle than V-belt

$$\beta = 180^{\circ} - \gamma$$

V-belt length:

$$L_{p} = 2 \cdot A + \pi \cdot D_{pn} + \frac{(D_{p2} - D_{p1})^{2}}{4 \cdot A}$$

- peripheral velocity of the Vbelt: $v = \frac{\pi \cdot D_{p1} \cdot n_1}{60 \cdot 1000}$ - finalnumber of V-belts

$$Z = \frac{P_c \cdot c_f}{c_l \cdot c_b \cdot c_z \cdot P_0}$$

DOI: 10.21279/1454-864X-16-I2-041 © 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

		-	et i i av të total i	
🚯 IGSV.fig				
File Edit View Layout	Tools Help			
n 🖉 🛛 L 🖻 🔒	n a } ∦ § ∮ ∮	•		
N I				-
	Datele initiale de proiectar	e	Rezultatele obtinute	
0 1				
<u>a</u>	Puterea de antrenare (actionare)	Edit Text	Raportul de transmitere	Static Text
	r valar da de vina de vina de (delaterina de)	COLLIER	roportor de transmisere	contract in the
I 🖸				
₩.	Turatia rotii conducatoare	Edit Text	Diametrul rotii conducatoare	Static Text
	Turatia roti conduse	Edit Text	Dianetrul mediu al rotii de curea	Static Text
	Diametrul rotii conduse	Edit Text	Distanta dintre axele robior de curea	Static Text
	Puterea nominala transmisa de o curea	Edit Text	Unghiul dintre ramunile curelei	Static Text
	Randamentul transmisiei prin curele	0.95 💌	Lunginea curelei	Static Text
	roanauma sara anamana printoarano	0.95 💌	Langina da ala	case real
			Viteza periferica a curelei	Static Text
		00101115070	Nunarul de curele definitiv	Static Text
		CALCULEAZA		
(<u>}</u>

Figure 1 Graphical Interface built in Matlab

CIMATLAB6p5/workIJGSV.m								
File	Edit View Text Debug Breakpoints Web Window Help							
٦ı	🕹 🗑 👗 🏚 🋍 い 이 🚑 🛤 🗜 🔒 🎗 🗄 智 訂 🎚 紹 Stack (Base 🔽 💈							
	1 function varargout = IGSV(varargin)							
2	% IGSV M-file for IGSV.fig							
3	% IGSV, by itself, creates a new IGSV or raises the existing % singleton*.							
5	<pre>% singleton*.</pre>							
6	* H = IGSV returns the handle to a new IGSV or the handle to							
7	the existing singleton*.							
8	s and chaboling builgacoon i							
9	% IGSV('CALLBACK',hObject,eventData,handles,) calls the local							
10	function named CALLBACK in IGSV. M with the given input arguments.							
11								
12	% IGSV('Property', 'Value',) creates a new IGSV or raises the							
13	* existing singleton*. Starting from the left, property value pairs are							
14	% applied to the GUI before IG3V OpeningFunction gets called. An							
15	% unrecognized property name or invalid value makes property application							
16	% stop. All inputs are passed to IGSV_OpeningFcn via varargin.							
17	*							
18	* *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one							
19	% instance to run (singleton)".							
20								
21	% See also: GUIDE, GUIDATA, GUIHANDLES							
22								
23	% Edit the above text to modify the response to help IGSV							
24								
25	% Last Modified by GUIDE v2.5 18-Apr-2016 15:34:26							
26 27	A Devin initialization and the NO NOT PRIT							
27	<pre>% Begin initialization code - D0 NOT EDIT qui Singleton = 1;</pre>							
20	gui_singleton - 1, gui State = struct('gui Name', mfilename,							
30	'gui Singleton', gui Singleton,							
31	'gui OpeningFon', @IGSV OpeningFon,							
32	'gui OutputFen', @IGSV OutputFen,							
33	'qui LayoutFcn', [],							
34	'gui Callback', []);							
35 -								
36 -	<pre>gui_State.gui_Callback = str2func(varargin{1});</pre>							
	IGSV Ln 22 Col 1							

Figure 2 IGSV.m (Source Programm)

GUI, once configured and saved generates two files/*GSV.m* (fig 2) and *IGSV.fig* (fig 3). In the *IGSV.m* file will configure properties of all objects built in file/*GSV.fig*.

Presented GUI is used to calculate the dimensional elements of V belt transmission, according to the algorithm presented in this article. The result is displayed by running the file *IGSV.m* and then after opening *IGSV.fig.* will obtain window from Figure 4. Here are entered from the keyboard initial design data.

🛃 IGSV		-	Ar out Balling	-
	Datele initiale de proie	ctare	Recultatele obtinute	
P	ulerea de antrenare (actionare)	4200	Raportul de transmitere	
	Turatia rotii conducatoare	1380	Diametrul roti conducatoare	
	Turatia rotii conduse	1100	Diametrul mediu al roti de curea	
	Diametrul rotii conduse	0.180	Distanta dintre axele rotilor de curea	
Pute	rea nominala transmisa de o curea		Urghiul dinte ramuite curelei	
Ra	Randamentul transmisiei prin cuvele	0.95 • 0.95 0.96 0.97	Lunginea curelei	
			Vileza periferica a curelei	
		CALCULEAZA	Nunaul de cuele definitiv	

Figure 3.IGSV.fig generated from the GUI (Initial Data Input)

The elements of V-belt transmission are calculated after pressing button *CALCULEAZA*, and values will be returned as shown in Fig 4.

9 JIGSV	Datele initiale de proiestare		Rezultatele obinute	
p M	Puterea de antrenare (actionare)	4200	Raportul de transmilere	1.255
	Turalia roli conducatoare	1380	Diametrul roti conducatoare	225.88
- d	Turatia roti conduse	1100	Diametrul mediu al robi de curea	202
	Diametrul roti conduce	Q.180	Distanta dintre avele rolitor de curea	785.3
e Ja U U Vi	Puterea nominala transmisa de o curea	3845	Unghiul dinte ramunie curelei	3235
VÎ Î	Randamentul transmisiei prin curele	0.95 💌	Lungimea curelei	2.261
			Viteza penilerica a curelei	13
	Ĺ	ALCULEAZA	Numani de cuele definióv	2

Figure 4.IGSV.fig generated from the GUI (Results Obtained)

CONCLUSION

Using the facilities offered by this programming environment are useful and functional helping for calculation of shale shaker's parameters. This article is the first stage of calculation, the purpose being to achieve a graphical interface that covers the calculation of all components of the cleaning system of drilling mud by creating multiple windows work.

BIBLIOGRAPHY

[1] Popescu, M., Fluide de foraj şi cimenturi de sondă, Editura Universităţii din Ploieşti, 2002
[2] Popovici, Al., Niculae, C., s.a., Calculul şi construcţia utilajului pentru forajul sondelor de petrol, Editura Universităţii din Ploieşti, 2005