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Abstract: In order to study the dynamic behavior of ships it is imperative to take into account the inherent 
nonlinearity of large – amplitude motions. Of the six motions of the ship, the roll oscillation is the most critical 
because it can lead to the capsizing. Among the models used in the literature to simulate a rolling ship we 
selected in this paper that one derived by Kan and Taguchi. The governing equation of motion contains a 
soft cubic term in the restoring moment, a linear damping and a single harmonic excitation forcing term. 
Exploiting the advantages of a new perturbation technique called Multiple Scales Lindstedt Poincare method, 
we succeeded to obtain the transient and steady – state responses both for primary resonance and the non-
resonant case. The analytical solutions provided by the new method were found to be in excellent or, at 
least, in decent agreement with numerical simulations, depending on the magnitude of external excitation 
amplitude.  
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INTRODUCTION 
In ship motion analysis, the study of large 
amplitude nonlinear rolling is crucial because it is 
closely linked with capsizes dynamics. For such 
roll analysis, linear approximation is no longer 
valid and, as a result, obtaining closed form 
solutions becomes dificult or even impossible. 
The nonlinear effects occur mainly due the nature 
of restoring moment, of damping and of 
hydrodynamical forces and moments acting on 
the ship. The first ones can be approximated 
reasonably well by quadratic or cubic polynomial 
of roll angle. Realistic restoring representations, 
like fifth or higher-order polynomial lead to 
tremendously problems when the analytical route 
is followed [1]. The damping is usually inserted in 
the equation of roll motion by means of linear -  
quadratic or linear – cubic terms in the angular roll 
velocity [2, 3]. Finally, the hydrodinamic forces 
can be modeled as series expansions about a 
forward cruising speed whose coefficients can be 
provided by different approaches [4]. 
Undoubtedly, it is of interest to be able to include 
in the roll equation as many as possible 
parameters involved in a real sea, but analytical 
solutions are impossible in all but the simplest 
cases. One can resorts to numerical methods but 
they often give very little insight into the structure 
of the solutions or the effects of the various 
parameters embedded in the governing equation. 
Some useful information can, however, be 
obtained by considering particular cases, for 
example those in which damping is assumed 
linear, the restoring moment is represented by a 
third-order polynomial and the regular waves are 
described by a single frequency harmonic 

excitation. For these simplified models, steady 
state responses to the external forcing can be 
approximated  either analitically, e.g by means of 
harmonic balance method, or numerically, e.g. 
using fast Fourier transform [5-7]. 
Generally, the roll equations proposed in the 
literature are strongly non-linear, thus the classical 
perturbation methods including the Lindstedt 
Poincare and Multiple Scales are unusable [8]. To 
extend the range of validity of these perturbation 
schemes to strongly non-linear systems, 
researchers working in different branches of 
physics, engineering and applied mathemtics 
have developed a number of techniques [9 - 12]. 
Recently, Pakdemirli et al proposed a new 
perturbation algorithm to handle this kind of 
systems. Because it combines the well – known 
Linstedt Poincare and Multiple Scales methods, 
the new approach was called Multiple Scales 
Lindstedt Poincare method (hereafter referring as 
MSLP method) and applied to the free and forced 
damped / undamped hard Duffing oscillator. The 
analytical solutions provided by the new method 
were found to be in good agreement with 
numerical simulations even in the strong non-
linear case [13 -15]. 
In this contribution, we explore the transient and 
steady – state solutions of the symmetric roll 
equation (studied in [16] and thought as a soft 
Duffing oscillator) and perform a comparison 
between the analytical solutions provided by 
MSLP method and numerical simulations. Our 
study includes both the primary resonance and 
the non-resonant case. 
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ROLL EQUATION 
In this paper, the following equation, derived by 
Kan and Taguchi [16], is further investigated with 
a view to study the ship’s roll motion 
 

MGMW
td

d
td

dI
V

=



















−⋅⋅++

2

2

2
1

ϕ
ϕϕϕξϕ

(1) 

 

where ϕ  is the roll angle, t is the time, Vϕ  
represents the vanishing angle of stability, I is the 
moment of the inertia for roll, ξ  the damping 
coefficient, W the displacement weight, GM the 
metacentric height, tMM eΩ= cos0  the exciting 
moment and eΩ  the encounter angular 
frequency. 
Equation (1) may be transformed into the 
nondimensional form 
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by means of the nondimensional quantities 
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The dots denote the order of differentiation with 
respect to the nondimensional time t . Despite of 
its relative simplicity, equation (2) shows a wide 
spectrum of qualitatively distinct types of 
behaviours, including steady-state solutions, 
jumps to resonance or period doubling cascades 
leading to chaos [7]. 
Thus, for fixed β  and Ω , as forcing amplitude f is 
gradually increased starting with zero, the 
systemfirst oscillates with an increasingly 
amplitude and period. If f is growed further the 
period T – orbit bifurcates into a period 2T – orbit, 
then period 4T – orbit, and so on. When the 
external amplitude f exceeds a certain value, the 
oscillation amplitude grows to infinity and it is said 
that the vessel is capsized. Sometimes, the 
sequence of period doubling is missing or it is 
very difficult to detect numerically.  
 

 
 

Figure 1. The growth of the oscillation 
amplitudes with external excitation f for 

different external frequenciesΩ  
 
Figure 1 reveals the dependence of the oscillation 
amplitude on the sizes of external excitation f and 
external frequency Ω .In the neighborhood of the 
primary resonance 1≈Ω , the roll angle is 
dangerously close to the angle of vanishing 
stability even for small values of forcing f.The 
influence of the secondary resonance 3/1≈Ω is 
also felt in Figure 1.  
It was mentioned before that, for a specified set of 
parameters ( )Ω,β , the system (2) evolves to a 
limit cycle for relatively small forcing amplitudes f 
or goes out to infinity for sufficiently large values 
of f. Figure 2 allows us to distinguish between 
these two different behaviors. The small black 
rectangles stand for a safe pair ),( fΩ , while the 
white area corresonds to capsize. 
 

 
 

Figure 2. The ),( fΩ  parameter control plane 
for 05.0=β . The black rectangles correspond 

to a safe oscillation, whilst the white area is 
associated to a capsizing scenario 

 
TRANSIENT AND STEADY-STATE  
APPROXIMATE SOLUTIONS 
The aim of this section is to derive transient and 
steady-state approximate solutions for the roll 
equation (2) by using the perturbation algorithm 
proposed in [12] and which combine the method 
of Multiple scales with Linstedt – Poincare 
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technique. The new approach allows both for the 
study of the transient response and for long term 
behavior of the analyzed system. More important, 
the system’s parameters do not need to be small 
such that the algorithm produces approximate 
solutions valid even for strongly nonlinear 
systems. 
For applying the MSLP method to the equation 
(2), it is rewritten in the form 
 

tfxxxx Ω=−++
•••

cosˆˆˆ2 232 εαεβε       (3) 
 

with 1<<ε  a small parameter and βα ˆ,ˆ  and f̂ of 
O(1). According to the standard Linstedt – 
Poincare method, a new variable 
 

tωτ = (4) 
 

is introduced, where ω  is the unknown frequency 
of the system. Equation (3) then becomes 
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where primes denote differentiation with respect 
to the new time variableτ . Now, we introduce 
three independent time scales 
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representing the slow and fast times and expand 
the dependent variable x and its derivatives in 
power series in the small parameter ε  
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Thus, instead of determining the dependent 
variable x as a function of timeτ , one determines 
it as a function of 10,TT , and 2T . For extend the 
range of validity of these perturbation expansions 
to the cases where the system’s parameters are 
not small, the square of the frequency is 
expanded too in power series of ε  
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and the substitution 
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is considered. Substituting equations (7) and (9) 
into (5) and equating coefficients of like powers of 
ε  yields the following set of linear partial 

differential equation which can be solved 
successively: 
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The first order solution of equation (10) has the 
form 
 

( ) ( ) ( ) ccTiTTATTTx += 0212100 exp,,,  (13) 
 

where cc stands for complex conjugate of the 
preceeding term. Inserting (13) into (11), one 
obtains 
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The term containing ( )0exp Ti  will produce a 
secular term which should not be part of a 
uniformly valid expansion. It follows that 
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In contrast to the conventional method of Multiple 
Scales, one has two possibilities to continue. One 
should first impose the condition 01 =AD  and 
solve (15) for 1ω . If the solution is a real number,  
then one continues the algorithm by searching for 

1x . If not, one selects 01=ω  and solve (15) for 
.1AD  Here, the condition 01 =AD  leads to the 

real value 
 

AAαω ˆ31=  (16) 
 

Additionally, 01 =AD  means that ( )2TAA = . 
Now, one can determine the second order 
approximate solution 1x  from (12) 
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The equation (12) for the third order of 
approximation contains into the right term the 

excitation term 0cosˆ Tf
ω
Ω

. It could be or not part 

of the condition that prevent the appearence of 
the secular terms at this level of approximation. In 
the following we concentrate on the non-resonant 
case, where the excitation frequency Ω is not so 
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close to the oscillation frequency ω , as well as on 
resonant case Ω≈ω . 
Non-resonant case 
Introducing (13) and (17) into (12), the secular 
terms will vanish if and only if 
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This time, the selection 02 =AD  yields a complex 
value for 2ω , without any physical meaning. The 
other way to continue, 02=ω , together with the 
polar form 
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we get immediately the amplitude and phase 
modulation equations 
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These equations describe the transient behavior 
towards the steady-state solution. The three order 
approximation for the solution of equation (3) is 
now obtained from  
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It results that 
 

( ) ( )( )++−= 0
5

0
4

4

2

2 5exp3exp3
64

ˆ
TiATiAAx

ω
α  

( ) ccTif
+






 Ω

Ω−
+ 022

2
exp

2

ˆ

ωω
ω                  (23) 

 

As a general conclusion, the non-resonant 
solution of roll equation (2) can be expressed as 
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with a and γ  given by (21) and  
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A careful consideration of modulation equations 
(21) shows that 0→a  as ∞→t , so the steady-
state behaviour of system (2) in non-resonant 
conditions is governed by 
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Resonant case Ω≈ω  
 

The fact that excitation frequency Ω is close to 
the oscillation frequency ω  could be written as 
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The selection 02 =AD  provides a complex 2ω , 
so we choose 02=ω and solve the previous 
equation for AD 2 . Replacing the polar form (19) 
and separating the real and imaginary parts, we 
get the differential system of equations in a and γ  
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Returning to the time t  in the same way as in the 
non-resonant case, the amplitude and phase 
modulation equations are written as follows  
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where the phase δ  is defined as γσδ −= 2T . 
These equations describe the transient behavior 
towards the steady-state solutions. The later ones 

are obtained for 0==
••
δa . Eliminating the phase 

δ  between (30) and (31) we get the frequency-
amplitude relationship 
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where the frequency ω  of the system is given by 
(25). It could be solved grafically to yield ( )Ω= aa . 
Finally, after eliminating the secular term, the 
equation (12) reduces to 
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From (7), (13), (17) and (33), one finds that the 
approximate solution of (2) to ( )3εO  can be 
expressed as 
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The solution (34) is valid both for the transient 
period and for the steady-state one. The 
amplitude a and the phase δ  yield from the 
modulation equations (30) and (31). 
NUMERICAL RESULTS 
In this section we performed a comparison 
between the analytical solutions (24) and (34) and 
the numerical ones to check the MSLP method’s 
efficiency. For computations and plots, Matlab 
package has been used. 
Throughout this part the fixed values ,1.0=ε

5.2ˆ =β  and 10ˆ =α  have been selected. It 
results that for obtaining an equation with a weak 
nonlinearity, therefore solvable with perturbation 
techniques, we encroached the preordered range 
for α̂ . We started with non-resonant case and 
then we continued with the primary resonance 

1≈Ω . 
Non-resonant case 
Equation (2) has been numerically integrated by 
use of a fourth order Runge – Kutta – Gill 
procedure with constant step, starting with initial 

conditions ( ) ( )1.0,5.00),0( =






 •
xx , and for a time 

interval equal to 100 cycles of forcing (considered 
enough large for the transients to die out). The 
range for external frequency was selected to be 

[ ]8.1,2.0∈Ω . The excitation amplitude f̂  has 
been gradually increased from small values, 
within the preordered range, till large enough 
values. The oscillation amplitude recorded in the 
last few cycles was kept and plotted versus the 

same quantity given by the analytical solution 
(24). The findings are displayed in Figure 3. 
Numerical results are labeled by red asterisks on 
the graphs while the results provided by MSLP 
method are associated to grey small points.  
For 10ˆ ≤f , MSLP solutions are in excellent 
agreement with those obtained by Runge – Kutta 
– Gill method, for the entire domain of external 
frequencies excepting a small neighborhood of 

1=Ω . If f̂  exceeds 10, the MSLP solutions are 
still in pretty good agreement with numerical ones, 
especially for 2.1>Ω . For this level of forcing, 
the secondary resonance 3/1≈Ω  becomes 
„visible” and make necessary another 
approximate solutions. A last thing to observe is 
what happens in the proximity of 1=Ω . Here, the 
numerical scheme provides unbounded solutions 
and this explains the absence of the asterisks 
above a certain value of f̂ . MSLP method gives 
unphysical solutions (see also Figure 2). 
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Figure 3. The comparison between a−Ω  
curvesobtained withMSLP method and Runge 
– Kutta - Gill method. The asterisks stand for 

numerical solution. 
a) 2ˆ =f ; b) 5ˆ =f ; c) 10ˆ =f ; d) 20ˆ =f . 

 
The previous observations are confirmed by the 
plots in Figure 4, where the numerical solution 
(red asterisks) is contrasted with MSLP solution 
(continuous blue line) for 6.0=Ω  and different 
f̂  

 

 

 
 

Figure 4. The comparison between time series 
solutions ( )txx = obtained withMSLP method 

and Runge – Kutta – Gill method. The 
asterisks stand for numerical solution.a) 

2ˆ =f ; b) 20ˆ =f . 
 

Resonant case Ω≈ω  
 

The steps of the same algorithm were followed for 
primary resonance. In this range of external 
frequencies, the excitation amplitude f̂ required 
for the system (2) to have unbounded solutions 
does not exceed values of order 7 to 10 (see 
Figure 2). In Figure 5, the frequency – amplitude 
curves a−Ω  given by (34) are compared with 
those yielded by numerical integration. The range 
for Ω  was thought to be [0.5, 1.5]. It is toolarge 
for our purpose, but we wanted to see how 
behaves the solution (34) away from the area of 
interest, 1≈Ω From the plots in Figure 5, it is 
obvious that for a weak excitation, 5ˆ ≤f , MSLP 
and numerical solutions match very well, 
especially for [ ].2.1,1∈Ω The agreement 

continues to be pretty well in the range [ ]10,5ˆ ∈f
, but only for those frequencies Ω  for which one 
has bounded solutions. 
For f̂ values selected without a flagrant order 
violation, the MSLP solution (34) describes both 
the transient and the steady-state behaviors, as 
proven by the first two panels of Figure 6. 
As excitation amplitude overcomes significantly 
the preordered range )1(ˆ Of = , then equations 
(30) and (31) cease to describe correctly at least 
the transient state (see the last two panels of 
Figure 6). 
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Figure 5. The comparison between a−Ω  
curvesobtained withMSLP method and Runge 
– Kutta - Gill method. The asterisks stand for 

numerical solution. 
 a) 2ˆ =f ; b) 5ˆ =f ; c) 10ˆ =f . 

 
 

 

 
 

 
 

 
 
 

Figure 6. The comparison between time series 
solutions ( )txx = obtained withMSLP method 

and Runge – Kutta – Gill method. The 
asterisks stand for numerical solution.a) 

2ˆ =f (transient state); b) 2ˆ =f (steady – 

state); c) 12ˆ =f (transient state);d) 12ˆ =f
(steady – state). 

 
 

 
 

CONCLUSIONS 
In the paper, the symmetric roll equation proposed by Kan and Taguchi for the capsizing of a ship in 
quartering seas was analitically investigated by means of a perturbation technique which combine the 
classical Multiple Scales and Lindstedt-Poincare methods. 
To this aim, the moderate nonlinear roll equation was transformed into an apparently weakly nonlinear 
equation and the above-mentioned procedure was applied for giving the transient and steady-state 
responses both for the primary resonance and the non-renonant case.  
The comparison between the numerical solution provided by an ODEs integrator and their analytical 
counterpart derived in the paper shows an excellent agreement every time the system parameters were 
selected without a flagrant violation of the order’s magnitude. The two solutions match acceptable well for 
the long-term behavior even some of the parameters exceed the order to a certain extent, but notable 
differences appear for the transition period towards the steady-state. For large external excitation 
amplitudes, the numerical scheme ceases to provide bounded solutions (the capsizing scenario) while the 
perturbation technique yields unphysical solutions 
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