
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

HONEYPOT SYSTEM BASED ON SOFTWARE CONTAINERS

Sergiu EFTIMIE1

Ciprian RĂCUCIU2

1Inf. Ph.D. Student, Military Technical Academy - Electronic, Information and Communication Systems for
Defense and Security Doctoral School
2Prof. Eng. Ph.D., Military Technical Academy - Electronic, Information and Communication Systems for
Defense and Security Doctoral School

Abstract: In this paper we explore aspects of building a honeypot system using software containers. Despite
their advantages, organizations see honeypots as too complex from a deployment and management
perspective. As software containers gain popularity these issues can be addressed using light containers
hosted on cloud infrastructures.

Keywords: Honeypot, Software containers, Cloud, Automation

Introduction
In this paper we explore aspects of building a
honeypot using software containers. A honeypot
system represents an intrusion detection
technology that becomes relevant to a security
setup when it’s being attacked. Although there
has been a growing interest over the last years in
honeypots and other related technologies,
organizations still see honeypots as too complex
from a management and deployment perspective,
despite the fact that they are now beginning to
play an important role in enterprise security. In the
first section of the paper we will describe the
different types of honeypots and their uses. The
second section describes the technology behind
software containers and will emphasize the
advantages of using them in application
development. In the third section we will
exploreaspects of implementing a honeypot using
container technology.
Honeypots
Honeypots are systems that are built to mimic
actual devices on a network [1]. These types of
systems were built in the past primarily by
researchers with the goal of studying the behavior
of the attackers. In the present days they are used
to provide early detection of malicious network
activity. They take up unused IP address space of
an enterprise network and continuously listen for
malicious activities performed by attackers [2].Any
interaction with a honeypot is by definition
considered suspicious.
From a deployment perspective honeypots can be
classified into two categories, production and
research honeypots. Production honeypots are
used by organizations and are placed next to
production servers inside the network. They
generally work to improve the security posture by
detecting attacks and give less information about
the modus operandi of the attackers. Research

honeypots are more complex both from a
deployment and a maintenance perspective. They
are run by organizations such as universities,
military or government to gather extensive
information about hacking methods and tactics.
From a design standpoint honeypots can be
classified as low-interaction, high-interactionand
pure honeypots. Low-interaction honeypots are
built to simulate services that are frequently
probed by attackers. They consume a small
amount of resources and the overall complexity of
the system is reduced. Low-interaction honeypots
are safer because they emulate vulnerabilities and
therefore cannot be leveraged by an attacker.
High-interaction honeypots are more complex and
they duplicate some of the activities present in
production systems. The user is allowed to
interact with the operating systems in order to
capture extensive information about the attack.
High-interaction honeypots are in general more
difficult to detect and have an increased
maintenance cost. Pure honeypots are set up by
emulating vulnerabilities on actual production
systems.
The usage of honeypots has many advantages
over traditional intrusion detection systems.
Honeypots collect a small amount of data in
comparison to traditional intrusion detection
systems. This leads to a better response and
action on unauthorized activity.
IDSs can generate a lot of false alerts and can
also have a difficulty in identifying new types of
attacks.
Honeypots on the other hand generate few false
negatives and positives because any activity
around them is unauthorized by
definition.Honeypots also use fewer resources
than IDSs and are capable of preventing attacks
in multiple ways. They are able to stop worms that
scan entire networks looking for vulnerabilities

415
DOI: 10.21279/1454-864X-16-I2-062
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

and they can deter human attacks by providing
fake resources while giving time for the security
officers to respond to the attack.
Honeypots contribute to the overall security by the
early detection of unknown attacks and that is
where their added value lies. Also honeypots are
being used to detect attacks from within an
organization. They can also help to respond to
attacks and can be used as incident-response
tools. New implementations include threat
response mechanisms such as the ability to adapt
systems based on an unauthorized
activity.Because of the fact that honeypots have
no use if no one attacks them and because they
can introduce new risks by providing attackers
new platforms from which they can launch
attacks, they must be used in conjunction with
other security mechanisms.The honeypot
application itself should be secured especially in
the high-interaction case because of increased
attack surface.
Containers and application development
The container portability has led to an increase
use of this technology inthe application
development area especially in the cloud
computing scene.
The container architecture represents another
major benefit because it providesa standard way
to divide applications into distributed objects. By
splitting applications in this way, containers allow
the placement of different application components
on different physical or virtual machines. This
adds flexibility and a series of advantages
regarding workload management.Docker takes
advantage of a series of Linux kernel security
features such as kernel namespaces to isolate
users, processes, networks and devices, and
cgroups to limit resource consumption [3].
The use of clustering, scheduling and
orchestration has improved the scaling and the
resilience of the applications based on containers
[4].
Open Container Initiative (OCI) is a project built
around the concept of software containers with
the ultimate goal of developing a standardized
platform in which applications and their
dependencies are encapsulated in containers.
Containers provide better utilization of computing
resources by eliminating the hypervisor, while
maintaining separation and isolation tasks without
using an operating system.
The project gain wide attention because the
promise of portability, agility and interoperability in
a broad range of infrastructures. The concept of
containerization allows virtual instances sharing a
single operating system, along with libraries and
relevant drivers. This approach reduces resource
consumption, since each container contains only
related dependencies. There is a rapidly growing
interest in using the container-based solutions.

Users can fully adopt new technology without the
risk of blocking a long-term technology provider.
Containerization also brings a number of
improvements like the fact that virtualization is
performed at the operating system level.
Containers share the same kernel, and
sometimes parts of the host operating system.
This use of containers offers enhanced flexibility
and a small size advantage compared to the use
of a hypervisor.
Containers have a series of advantages and
capabilities:
• Container abstractions reduce complexity.

Containers do not require dependencies on
the application infrastructure and in
consequence there is no need for a complex
interface with the platform services.

• Containers provide advanced distributed
computing capabilities. Application
components built on containers can be
executed on different cloud platforms.
Enterprises can choose cloud providers based
on cost and performance.

• Containers can take advantage of the
automation in order to maximize portability.

• Containers provide better security and
governance. Security and governance
services are specific to the platform and not to
the application. By placing security and
governance outside of the container reduces
complexity in a significant way.

• Containers can provide automation services
that make use of policy-based optimization.
An automation layer can locate a suitable
platform to execute containers and migrate
automatically to the respective platform.

For hosting providers, the primary benefit of using
containers was the increased density. For
enterprises, in the past, in most data centers there
was no need fora density increase. Virtualization
as a technology was suitable for businesses
because most servers had low utilization and it
represented a good way to use their full capacity.
Thus, virtualization has helped increase density
but did not bring any real value to businesses.
Containerization is in the position now to add real
value through the scaling of the applications.

There are two basic approaches to scale
applications using containers. One approach is to
create a custom system that manages the
containers. This will translate into a system that
launches new container instances in an
automated manner in order to handle an
increasing workload. This approach has hidden
costs that rest in maintenance.
A second approach is to use one of the container
technologies on the market that will provide the
basic means to enable scalability through

416
DOI: 10.21279/1454-864X-16-I2-062
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

orchestration, scheduling, and clustering. We will
present some of the tools available on the market:
GoogleKubernetes is an open-source system for
automating deployment, operations, and scaling
of containerized applications, basically acontainer
cluster manager. The system can schedule a
number of container copies across a group of
node instances. The container replication and
distribution assures the scalingin mostcontainer-
based applications.This approach to scaling
containers is similar to the ones provided by the
other tools.
Cloudify is another service that provides an
orchestration tool that has some similar
functionswith Docker Swarm and Docker
Compose.
The developers have the option to describe
complex topologies using YAML (YAML Ain't
Markup Language) blueprints. This includes
infrastructure, middleware and application layers.
Cloudify is a more orchestration-oriented tool, and
should be considered in orchestration and
automation tasks and not clustering.
Docker Swarm is a tool that provides clustering,
schedulingand integration capabilities. Developers
can use this tool to build and ship distributed
applications based on multiple containers that
include the necessary scaling and management.
Honeypot scheme and implementation
For our purposes we will implement a low-
interaction honeypot that will emulate a series of
vulnerable web services.We will not pursue high
interaction honeypots because they are more
difficult to build and the characterizing and the
classification of the current anomalies and attacks
isa very complex and a time consuming task,
done by experts [5].
The web services will be distributed over a
number of Docker containers [Fig. 1].

Fig. 1. Honeypot based on containers

Containers have the ability to make connections
to the outside world, but not vice versa, so we will
use port binding in order to map container ports to

the host. Outgoing connections will appear to
originate from the host IP addresses. This is
accomplished through a masquerading rule,
iptablesthat is created by the Docker server on the
host machine [6].
Incoming connections are accepted by containers
only if they are started using special options when
the runcommand is invoked. Two approaches are
possible, mapping to an ephemeral port or
explicitly to a specific port.
As we mentioned earlier, low-interaction
honeypots are built to emulate services that are
frequently probed by attackers. In the last few
years, Web Services has rapidly evolved by
providing attractive features which can be used by
businesses and IT organizations [7] but are also
introducing new vulnerabilities.In this case we will
use explicit mappingthat can be specified using --
publish=SPEC optionor the -p SPEC. This allows
the particularization of the port on the Docker
server that is mapped to the port in the container.

Fig. 2.Vulnerability scanning on a corporate

network

A container host will be used to spawn new
containers that replicate different types of
vulnerabilities. An attacker that uses an
automated scanner to scan a network for
vulnerabilities [Fig. 2] will trigger an alert in the
system if he scans one of the vulnerable ports.
The launch of a container will be accompanied by
the introduction of a line in the iptables rule. This
basically creates a firewall between containers.
Docker runs on the same kernel as the host
machine. This enables us to log the actions of the
attacker by monitoring the logging at the kernel
level.
The containers that will emulate the vulnerabilities
will be custom built to replicate the behavior of
different operating systems, web services etc.
These will be low-interaction honeypots. As stated
earlier in the paper, these types of honeypotsare

417
DOI: 10.21279/1454-864X-16-I2-062
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

safer because cannot be leveraged by an attacker
to perform further attacks.

Future development can be made to improve the
efficiency of the honeypots by updating the
images with relevant or 0-day vulnerabilities.

CONCLUSIONS
Honeypots are not a new technology. By reducing the number of false alerts, this technology emerges as a
key component in a multiple layer approach to intrusion detection. Honeypots do not depend on known
patterns of attack but they do have one big disadvantage: their limited field of view. They only capture
attacks that are directed towards them and will miss the ones directed against other systems. This is one of
the reasons for which honeypots are not recommended to replace existing security technologies. By taking a
multi-layer approach, they are used as an important early-detection complementary tool for network and host
based intrusion detection.
Honeypots do have a series of advantages.By being a device that is intended to be compromised, means
that therewon’t be any production traffic going to or from the honeypot system.
Any connection made to the honeypot, will likely bea possible attack, scan or a probe. If a connection will
appear as coming from the honeypotwould mean that the honeypot was compromised.
Although false alerts can be issued, the majority of the honeypot traffic can be seen as malicious activity.
As honeypots are beginning to be deployedin production systems, their advantages become apparent. In
time, honeypots have the potential to become an essential part in security operations done at an enterprise-
level.
Software container technology has increased in popularity in the last years and has received support from
large companies. By combining the advantages of the two technologies, containers and low-interaction
honeypots we can obtain an early-detection tool that is effective from a cost perspective and has a low
maintenance footprint.
As more enterprises start to encrypt data due to regulations, more and more attacks are performed by using
encryption as well. This is a known issue for traditional intrusion detection systems that can be blinded by
encrypting network traffic. Honeypots solve this issue because any activity around them as mentioned earlier
is considered unauthorized.
By combining the power of containerization and the advantages of the honeypots we can envision the
creation of a scalable SecaaS (Security-as-a-Service) system that will possess advanced early-detection
capabilities.
We also envision future work on a partially automated system that leverages the CVE (Common
Vulnerabilities and Exposures) database in order to create container images suitable for honeypot use.

BIBLIOGRAPHY
[1] Charlie Scott, Richard Carbone- Designing and Implementing a Honeypot for a SCADA Network, SANS
Institute, 2014
[2] Gokul Kannan Sadasivam, Chittaranjan Hota - Scalable Honeypot Architecture for Identifying Malicious
Network Activities, International Conference on Emerging Information Technology and Engineering
Solutions,2015
[3] Enrico Bacis, Simone Mutti, Steven Capelli, Stefano Paraboschi – DockerPolicyModules: Mandatory
Access Control for Docker Containers, IEEE CNS 2015 Poster Session, 2015
[4]Andrea Tosatto, Pietro Ruiu, Antonio Attanasio - Container-based orchestration in cloud: state of the art
and challenges, 9thInternational Conference on Complex, Intelligent, and Software Intensive Systems, 2015
[5]Philippe Owezarski - Unsupervised Classification and Characterization of Honeypot Attacks, 10th
International Conference on Network and Service Management, 2014
[6] http://www.docker.com/, accessed April 2016
[7] Abdallah Ghourabi, Tarek Abbes, Adel Bouhoula - Design and Implementation of Web Service Honeypot,
19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2011

418
DOI: 10.21279/1454-864X-16-I2-062
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

