
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

AUTOMATED FPGA FIRMWARE MANAGEMENT IN HPC CLUSTERS

Laurentiu Alexandru DUMITRU1

Stefania Loredana NITA2

1Eng., Ph.D. (c), Military Technical Academy, 39-49 George Cosbuc Bvd., Bucharest, Romania
2Ph.D. (c), Integrated Systems Department, Institute for Computers, Fabrica de Glucoză 11A, Bucharest,
Romania

Abstract: FPGA-based accelerators are increasingly deployed on cluster and grid systems due to their
highly flexible architecture. Given the generic nature of a high performance computing system, the firmware
and software running on the FPGAs changes dynamically, according to the specifications requested by the
launched application. Along with performance monitoring, this reconfiguration process can be automated in
order to decrease idle-times on computing nodes and to have a centralized view of the system. Such an
architecture would be centered around a client-server model in which the computing nodes run the client
component, along with the batch agent. The server component would be located anywhere in the cluster as
long as it has the appropriate permission to interact with the batch server. The paper explores the possibility
of integrating this reconfiguration model with an existing batch system, without major changes in the way
users operate the cluster.

Keywords: FPGA, cluster, batch system, firmware management

Introduction
FPGA-based accelerators can be installed in
parallel computing environments, like computing
grids, in cloud environments and, in special cases,
in dedicated workstations. Whatever the situation,
monitoring the available resources, the
performance and the need for firmware reloading
must be automatically managed in order to reduce
idle time per computing node. Reprogramming an
accelerator involves, in most cases, even
rebooting and, therefore, should be done as
seldom as possible.
Since a massive cluster has many computing
nodes that execute user jobs by various
algorithms, it is clear that the cluster administrator
cannot manually trigger a reconfiguration, since it
cannot cope with a high rate of change caused by
the need of a different firmware. The current
paper proposes a client-daemon approach that
manages the reconfiguration process across
accelerators in the entire cluster. Each computing
node has a client that connects to a daemon
which has an overview of all the available
resources and requests. This application also
interacts with the local resource manager and the
cluster scheduler. By automating this life cycle of
a specific FPGA firmware instance
the normal user does not need to know about any
specific configuration details and the cluster
administrator does not need to manually
intervene.
The proposed solution is based on a shared
library (FPGA Shared Acceleration Platform –
FSAP) that is used by applications which make
use of the accelerator modules. In the case of

standalone workstations where there is no
centralized management, the library assures the
reconfiguration process, as it will be further
described. It is also the library's task to bridge
between the user space application and the
acceleration module. Such a data transfer, which
can be based on mapped memory as in [1], is
usually mediated by a kernel module. The library
wraps certain system functions in order to obtain
the desired functionality. By mediating key
function calls, it can signal if the current firmware
needs to be replaced or not.
Another important part of the architecture is the
actual firmware that is loaded on the accelerators.
Since the firmware must be available on all nodes,
the software uses a well-defined configuration
scheme and storage location. This facilitates the
exchange of modules between different working
groups. By synchronizing to a central repository
different users, for example, can benefit from a
code addition, a bug fix or a performance
enhancement simply by updating to the latest
version. The control system takes care of re-
instantiating the new firmware as soon as the
operation can take place. The update process can
cover non-firmware related code such as soft core
applications or specific initialization values for
memory regions.
Firmware management
As noted before, the firmware along with optional
components form the reconfiguration package.
The firmware is the core part which defines the
internal architecture of the FPGA. Any
acceleration modules are inside it. If the
accelerator has a soft processor, a specific code

406
DOI: 10.21279/1454-864X-16-I2-060
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

must be also loaded to be executed by that
processor. This configuration package can be
used by standalone systems, systems that
participate in a cloud or systems that are
integrated in a computing cluster. Traditionally,
the firmware is stored on a non-volatile memory
and it is loaded on power up. Such a case is often
seen on devices that have a relatively fixed
configuration and do rarely require a change in it.
Standalone workstations can have dedicated
accelerators (in the form of GPUs [5] or FPGAs)
for various tasks. Although operating such a
workstation requires an advanced degree of
technical knowledge, the FSAP library tries to
simplify day to day operations. In this case,
firmware reprogramming is done either
automatically or by an operator's request. A
configuration file that is used by the library sets
the work mode and various other parameters
used internally, such as available firmwares,
available modules and paths:
management {
 firmware_dir=/opt/fsap/bitfiles
 module_dir=/opt/fsap/modules
 auto_program=1
 program_script=xc3sprog
 program_args=””
}
firmware fw_name_1 {
 id=0x100
 bitfile=0x100.bin
 allowed_modules = { “mod_matrix1”,”smm3” }
 small_modules=3
 medium_modules=3
 large_modules=1
 …
}
The firmware section identifies available
firmwares with their inherent properties. When
manually triggered, the accelerator is
reprogrammed with the firmware specified by the
operator. In automatic mode, the library checks if
the requested acceleration module by the
userspace application is present on the current
firmware. If not the systems notifies the operator if
a reboot is necessary.
Reprogramming an accelerator requires a valid
reconfiguration channel such as an USB link with
an internal programmer or a JTAG adapter. An
alternative method would be to have the
firmwares stored on a non-volatile memory on the
accelerator. In this case there is no need for a
programming link but, the main disadvantage is
that uploading a new firmware can be a more
complicated operation. Usually a combination
between these two options can prove to be a
good compromise. For example – two main
firmwares reside on a flash memory and can be
loaded as needed and, if the situation requires it,
an external firmware could be uploaded and used
in a particular situation – such as testing a branch
in the main application code.

Workstation-based environments are ideal for the
development and testing phases of accelerator
modules. Several debug tools and more verbose
logging channels are available in this setup and
allow an engineer to easily troubleshoot a
particular module.
Cloud structures expose two type of resources:
application middle-wares and virtual private
servers. Middle-wares can be viewed as shared
code that can be licensed through Software as a
Service model. A middle-ware is rigid as the user
cannot implement new functions or modify
existing behavior. Virtual private servers are, from
a software point of view, the same as physical
servers. From a hardware point of view, multiple
virtual servers share physical resources. If the
host system has a FPGA accelerator installed, it
can be exposed (passed-through) to a specific
virtual server. If this is the case, the virtual server
behaves just like a dedicated workstation with an
FPGA installed. In particular cases, the
accelerator can expose virtual functions that can
be shared among multiple virtual servers. This
approach is more technically complex and
requires specific hardware that has support for
technologies such as Single Root I/O
Virtualization [9]. With regards to the most widely
deployed scenarios, dedicated FPGAs are mostly
used in academic and high performance
computing clusters. Usually these systems do not
use cloud architectures but cluster-like batch
systems. If, however, a cloud must benefit from
such acceleration methods, there are only some
adjustments to be made in order to fully integrate
the proposed solution. Another variant is to have
an ad-hoc cluster based on virtual machines
inside the cloud. Provided that the hardware
exposes the appropriate integration method for an
accelerator to a virtual machine, the cluster can
be viewed as a traditional one, described in the
following section.
Other solutions such as the DAC architecture [3]
or the service oriented approach presented in [4]
could be deployed if the jobs inside the cluster
share most of the accelerated functions.
HPC Cluster integration
High performance clusters are composed of many
computing nodes which can execute user
submitted jobs. Usually, a cluster can be viewed
as a non-interactive, submit – run — retrieve,
resource, as opposed to interactive cloud
resources. Multiple clusters can be connected to
form a computing grid. Such an architecture can
be regarded as a cluster of clusters, a super
cluster, in which a user with the appropriate
credentials can launch its job without knowing on
which physical grid site it would execute. A typical
example of a world-scale computing grid is the

407
DOI: 10.21279/1454-864X-16-I2-060
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

CERN's WLCG – Worldwide LHC Computing
Grid.

Figure 1- Cluster architecture

A generic cluster architecture, as in Fig. 1,
illustrates the typical work-flow [2]. The user
submits (1) a job, the computing node identifies a
suitable run queue and transfers the job to that
node (2) where it is executed (3). The result is
sent back to the user (4) where it can be
examined. Such a job has a specific definition in
which a minimal set of required resources can be
specified. Among the job's specification, an
attribute that indicates a FPGA accelerator
requirement can be set. The batch system on the
Computing Element works with a resource
scheduler in order to satisfy certain Quality of
Service needs. Several scheduling approaches for
high density heterogeneous clusters have been
proposed in [6],[7] and [8].
When the system administrator configures the
cluster, it can set specific properties for the worker
nodes. The attributes declare a node's capabilities
in terms of number of computing cores, available
memory, dedicated graphic cards, specific
software, and so on. In our FSAP context a new
attribute such as “fsap-fw” can be set to identify
hardware accelerated nodes. One of the most
widely deployed batch system, PBS, can easily be
configured in this way either by configuration files:
[/var/lib/torque/serv_priv/nodes]
node001np=24
nodeN np=X fsap-fw-0x100
or at runtime:
qmgr -c “set node node010 properties += “fsap-
fw-0x200”

When a submitted job requires hardware
acceleration all it must have is such an attribute
as a requirement in the definition. Multiple
attributes can be set in order to specify a set of
compatible firmwares. As described above, each
firmware can support multiple acceleration
modules. When an application requests a
particular module, the shared library identifies
which firmwares are suitable for execution.
Identification is done by searching all the available
firmware for compatibility with the requested
module. In the configuration file, each firmware
section contains the allowed_modulesparameters
which is a list with all the module names that are
supported by that firmware.

Given the fact that the shared library must be
vendor-independent with regards to the batch
system, the most convenient way to assure
interoperability between the batch system and the
FSAP platform is to use generic wrapper scripts
for actions that have impact on the batch system.
This method assures integration transparency and
eliminates the need for multiple connectors which
would increase the development and maintenance
complexity.
In case of PBS the submission procedure must be
altered in order to notify the FSAP daemon about
a new job being ran. The simple wrapper easily
does the job:
fsap_qsub.sh -s myscript.pbs -m 1234 -m 2345
#!/bin/bash
mods=””
whilegetopts “:s: :m:” opt; do
 case $opt in
 s) script=”$OPTARG”; ;;
 m) mods=”$mods$OPTARG “; ;;
 esac
done
fwid=`fsap_get_fw_by_mods $mods”
if ((fwid ==0)); then
 echo “No firmware found!”;
else
 fsap_enqueue_job $fwid
fi
The script takes as arguments the original batch
job and the required modules, identified by their
IDs as defined in the FSAP configuration files.
Called functions inside the script are exposed by
the shared library and are detailed in the following
sections. Given the fact that such a framework
requires additional attention, cluster users should
be aware that for benefiting from accelerated
functions, a specific submit method, different from
the cluster's native one, must be used.
When the job is launched on the worker node, the
cluster client launches an application, according to
the job definition, after it has prepared the
environment. The actual calls to the accelerator
reside in this application and are entirely the
user's responsibility. In a typical situation, each
cluster node would have local libraries that
facilitate the communication between the
userspace application and the accelerator, most
often with the help of a kernel module.

Communication inside the cluster-like
Inside a cluster that implements the proposed
platform runs at least a daemon (FSAPD) to which
clients (FSAPC) connect. The main roles of this
additional communication system are: firmware
reconfiguration, node monitoring and accelerator-
related event logging. One or more daemons can
exist inside a cluster in order to meet situations
that need fine-tuning and have strict execution
deadlines. For a more complex architecture, that
requires different firmwares or has a tight
schedule with regards to reboots, the platform can

408
DOI: 10.21279/1454-864X-16-I2-060
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

implement a partitioning scheme as described in
Figure 2:

Figure 2 – Virtual zones

The user can manually choose a virtual execution
zone which is controlled by a specific daemon. By
selecting a particular zone, it can target specific
systems. For example, if a cluster is divided into
three zones – production, normal and
development, a user can safely submit probe
applications to the development zone without
disrupting the operation of the production
systems.
The communication protocol between clients and
servers is stateless and has a restrictive set of
commands with well-defined arguments. The main
functions of the endpoints are: Log(node) – sends
periodic information for logging purposes. By
using this function, the daemon can detect certain
conditions or errors and take action. Reprogram()
signalizes the necessity for loading a new
firmware. This event marks the node as temporary
offline, until it is reprogrammed. Isfree() is used at
the end of the reprogramming flow to signal that
the node can execute jobs. Reportfw() acts as a
keep-alive watchdog and also reports the current
firmware. As with the case of the batch system,
this functions can call wrapper scripts that are
tailored for a specific environment.
Reconfiguration requests are queued into a First
In First Out structure and are de-queued after the
node is rebooted and has confirmed its status.
This happens inside the FSMD. After the node is
operational, jobs are not directly submitted with
the cluster's native interface; instead the wrapper
is used again. This method assures that the
firmware version is checked again and the
reprogramming was successful. Specific tuning

might be needed
in order to keep
the rebooted node
reserved until the
original job that
has triggered the
reboot is queued
to the node.
Otherwise the

node might start to run other waiting jobs and the
original job would still be waiting.
Firmware reconfiguration on nodes

In the previous section, a call to
fsap_enqueue_job was done inside the submit
wrapper to start the execution for a specific job.
This procedure has the critical role to check if
there is at least one accelerator that runs the
required firmware. If there is none, a worker node
will be designated to reprogram its accelerator
and reboot. This is done by a special job
submitted to the cluster. The reconfiguration flow
can be divided in: user actions, FSAP
management system actions and FSAP client
actions on a working node.
After a user executes the wrapper, the framework
identifies, at steps 1 and 2, the firmware and
version required and checks (3) if such a firmware
is loaded anywhere in the cluster. If yes, the job is
send to a node that matches the submit criteria. If
the result is negative, the daemon must issue a
reconfiguration request. From this point on, the
management daemon takes control of the process
and oversees the remaining steps. A cluster,
based on its dimension, can only sustain a certain
amount of different firmware at a given moment.
In case of large clusters, the reprogramming
probability decreases due to their large amount of
resources. Otherwise, reprogramming can occur
more often as the number of users (with specific
needs) increases. If no firmware has been found,
at step 5, the management system needs to send
a reconfiguration job. The nod on which this job is
executed will have to be rebooted in order for the
FPGA firmware to properly load and interact with
the host operating system.
The last part of the reconfiguration flow is handled
without any user interaction and starts as soon as
the job is transferred to the working node and
starts executing, at step 7.

Figure 3– Reconfiguration I

409
DOI: 10.21279/1454-864X-16-I2-060
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

The job will signal the management node (step 8)
and wait for any jobs that are still running – step 7.
The FSAP daemon will communicate to the batch
system to mark the node as offline, to prevent any
new jobs from being submitted to it. After there
are no more jobs left, at step 11, the client
application reprograms the accelerator and
reboots the node. Meanwhile, the daemon will
detect through Isfree() and Reportfw() functions
when the node is rebooted and checks if
everything is in order. After the node comes back

online, step 13, the daemon updates the node's
attributes in the batch system because it has to
reflect the new firmware version. The node is then
marked as online (14), the original job is removed
from the FIFO and is re-submitted. At this point, if
everything went without any errors, the job should
be executed on the node as soon as there is an
open slot on it.
It is important to differentiate the need for integral
FPGA reprogramming as opposed to partial
reprogramming. Full reprogramming requires a
reboot and is only needed when a desired module
cannot be fitted into the current firmware. Partial
reprogramming is the key element to minimize idle
times caused by rebooting. In most of the cases, a
firmware will attempt to accommodate a number
of modules of a certain type. Each module,
designated small, medium or large in the
configuration file, uses a fixed number of FPGA
resources and special elements, such as DSP
blocks. If the requested module cannot be fitted
onto the current firmware but a compatible
firmware is available the middle-ware will trigger a
full reprogramming request. If the required module
is already loaded (best-case) or can be fitted in
the current firmware then the middle-ware initiates
a partial reconfiguration flow.

CONCLUSIONS AND FUTURE WORK
FPGA based accelerators are being more frequently used in high performance computing centers. Their
reprogramming capabilities along with modern technologies, that enable them to run at high clock speeds,
make them the ideal candidates for replacing the classic ASIC based hardware accelerators. Many of these
accelerators come in the form of PCI Express expansion cards. Thus a single physical server can host
multiple accelerators that can be used by local applications or forwarded to virtual machines by pass-through
technologies.
In a typical large high performance cluster, the nature of the submitted jobs, in terms of called functions, is
heterogeneous. This is the result of users from different fields working on the same infrastructure.
As the FPGAs are a finite resource, in terms of the number of hardware acceleration modules that can
simultaneously exist on one accelerator, dynamic reconfiguration must take place to successfully load and
execute a particular module.
The FPGA Shared Acceleration Platform, described in the current document, proposes a method of
managing the reconfiguration requirements of the accelerators inside a cluster. It is minimally invasive, fully
transparent and provides vendor-independent integration with both batch systems and accelerator providers.
Its client-server architecture assures a consistent communication channel based on stable technologies such
as web services or pure IP stack.
The platform seamlessly integrates the reconfiguration flow of an accelerator into the cluster's queue-based
execution system. A well-defined configuration along with a code sharing and versioning system allows
different working groups to easily exchange modules and firm wares.
As many batch systems have already included in their standard attribute sets the Graphic Processor
capabilities for the worker nodes, FPGA capabilities will be present in the near future. A control system, as
the one described here, would be integrated in the core of the batch system. In such a scenario, the normal
user would not need any particular training for operating the cluster. Computing grids would have an
ecosystem from which each participating cluster could just pull a particular FPGA image for its nodes and
start running hardware-accelerated jobs. Such a case would have to address multiple constraints such as
FPGA vendors, chip families and area constraints.

BIBLIOGRAPHY

Figure 4 – Reconfiguration II

410
DOI: 10.21279/1454-864X-16-I2-060
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2
The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI /

JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access /
Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

[1] Dumitru, Laurentiu Alexandru. "Leveragins FPGAS and SDNS for high speed ipc in high performance
computing clusters."Scientific Bulletin" Mircea cel Batran" Naval Academy (2015)
[2] Orlandea, C. Coca and L. Dumitru, "High-performance computing system for high energy physics."
ROMANIAN JOURNAL OF PHYSICS 56.3-4 (2011): 359-365.
[3] Prabhakaran, Suraj, et al. "A dynamic resource management system for network-attached accelerator
clusters." Parallel Processing (ICPP), 2013 42nd International Conference on. IEEE, 2013.
[4] Knodel, Oliver, et al. "Integration of a highly scalable, multi-FPGA-based hardware accelerator in common
cluster infrastructures." Parallel Processing (ICPP), 2013 42nd International Conference on. IEEE, 2013.
[5] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated high performance computing in virtual machines,”
in Proc. of the International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2009.
[6] L. Barsanti and A. C. Sodan, “Adaptive job scheduling via predictive job resource allocation,” in
Scheduling Strategies 782 for Parallel Processing. 140.
[7] S.-S. Boutammine, D. Millot, and C. Parrot, “A runtime scheduling method for dynamic and
heterogeneous plat-forms,” in Parallel Processing Workshops, 2006.ICPP 2006 Workshops. 2006
International Conference on, 2006,pp. 8 pp. –282.
[8] D. Kumar, Z.-Y. Shae, and H. Jamjoom, “Scheduling batch and heterogeneous jobs with runtime elasticity
in a parallel processing environment,” in Parallel and Distributed Processing Symposium Workshops PhD
Forum (IPDPSW), 2012 IEEE 26th International, may 2012, pp. 65 –78.
[9] Lockwood, Glenn K., MahidharTatineni, and Rick Wagner. "SR-IOV: Performance Benefits for Virtualized
Interconnects." Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery
Environment.ACM, 2014.

411
DOI: 10.21279/1454-864X-16-I2-060
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

