
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

31
DOI: 10.21279/1454-864X-16-I1-005
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

PRACTICAL ASPECTS ON AUTOMATIC GENERATION OF UNIVERSITY

TIMETABLES – A CASE STUDY

Andrei BAUTU1
Elena BAUTU2
1Lecturer, Ph.D., “Mircea cel Batran” Naval Academy, Romania
2Lecturer, Ph.D., “Ovidius” University, Romania

Abstract: The problem of automatic generation of university timetables have been widely discussed in the
literature, with many proposed general solutions, from simple heuristics to advanced hybrid algorithms.
These algorithms perform well on various test cases, but when they are applied to an instance of the
problem specific to an organization, one has to define or adapt the constraints to the particularities of that
organization. This adaptation is required for various reasons like algorithm runtime or timetable acceptance
from the university staff. In this paper, we present a case study on generating the timetable of the “Mircea cel
Bătrân” Naval Academy.

Keywords: timetable, genetic algorithm, constraints satisfaction problem

Introduction
The problem of automatic generation of university
timetables is widely discussed in the literature [2],
with many proposed general solutions, from
simple heuristics [1][8] to advanced algorithms
[7][4][3][9][10][11].
The university course timetabling problem is an
NP-complete problem that consists in scheduling
various teaching activities (courses, laboratories,
projects) within a university academic year or
semester. The timetable must satisfy a series of
constraints related to time, space, and other types
of resources (students, teachers, equipment,
blackboards, simulators, etc.) used during the
specified teaching activities. The teaching
activities are scheduled in fixed timeslots, typically
spread across one (uniform timetable) or two
weeks (odd/even timetable).
Constraints related to teaching activities are
restrictions related to the time and space that
activities can be planned in. For example, a
typical space constraint is related to the capacity
of rooms (i.e. rooms need to be large enough
seat-wise so that they fit all the students in the
class). A typical time constraint is related to the
availability of teachers (e.g. some teachers can
have teaching hours in the morning).
Problem constraints
When building the timetable of any universities
(manually, semi-automatically, or automatically),
the staff responsible for this process has to take
into account a series of constraints related to
teaching staff, students, and resources. Although
they may differ in their goal, these constraints fall
into two categories: hard constraints and soft
constraints. To create a valid timetable (i.e. a
timetable that can be used), all the hard
constraints must be satisfied (i.e. it is mandatory

to fulfill their requirements). On the other hand,
soft constraints are not mandatory and some of
them can be broken (i.e. not fulfilled). However,
the more soft constraints are satisfied, the better
the timetable is. Some examples of hard
constraints are:
- a teacher teaches only one class at a time
- a room is used by only one class at a time
- a student attends only one class at a time
Some examples of soft constraints are:
- a student should attend maximum X classes

per day
- a teacher should teach maximal X classes per

day
- students should have at maximum one free

timeslot in their schedule per day
Depending on the policies of universities, some
constraints that are soft in one university could be
hard for others. For example, the decision to give
a mandatory lunch break at noon for all students.
FET software
FET (an acronym for Free Evolutionary
Timetabling) is a free cross-platform, written in
C++ with QT-base user interface, which can be
used for scheduling the timetable of schools and
universities. It is used or referenced by various
research papers [10][11][5][6] because it
implements many constraints related to teachers,
students groups, rooms, etc. It uses a recursive
swapping heuristic to build the timetable
automatically, although early versions used
genetic algorithms. It also supports manual and
semi-automatic scheduling. The authors describe
the FET algorithm as a “heuristic placing the
activities in turn, starting with the most difficult
ones and swaps activities recursively if that is
possible to make space for a new activity, or, in
extreme cases, backtracks and switches order of
evaluation” [12].

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

32
DOI: 10.21279/1454-864X-16-I1-005
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Automatic timetabling in practice
Automatic timetable software, in general, offers
many types of constraints that need to be
configured and used to model the policy of the
university related to timetables. FET, in particular,
offers over 60 types of time constraints and over
25 types of space constraints that apply to
students, teachers, and classes.
In this section, we present a case study related to
the practical use of FET constraints in automatic
timetabling for the “Mircea cel Bătrân” Naval
Academy (MBNA). The timetable in MBNA spans
on a two weeks period (odd/even timetables), with
each week-day having 6 teaching slots (60
timeslots per timetable). The university has 106
teaching rooms across 9 buildings in the campus,
which differ in the number of seats, features and
equipment, and purpose (laboratories, lecture
halls, etc.). The university has a teaching staff of
97 members. They teach classes to 106 cohorts
of students, organized in 57 groups (a group has
1-3 cohorts in it, depending on the number of
students in the study program), which are
organized in 41 study years (i.e. year 1-4 for
various study programs). Some classes are taught
for individual cohorts (e.g. laboratories, practical
projects), some are taught for groups
(seminaries), and others are taught for entire
study years (course lectures). In total, 1506
teaching activities have to be timetabled in the 60
timeslots.
Some of the hard constraints for the timetable,
derived from the university policy, are:
H1. A teacher teaches only one class at a time
H2. A student attends only one class at a time
H3. A room is used by only one class at a time
H4. A room must have enough number of seats to
fill all students in the class
H5. Some students cohorts (Navy students) have
mandatory lunch break at noon (in the 4th timeslot)
H6. Some students cohorts (e.g. master studies)
have classes only in the evening (5th and 6th
timeslot)
H7. Some student cohorts have to start classes
each day at 8 AM (1st timeslot)
H8. Teachers with management duties must have
no classes on Monday mornings (1st timeslot) due
to regular management meetings planned at that
time
H9. Optional classes must be scheduled at the
end of students’ day, after mandatory classes (i.e.
there must be no mandatory classes after optional
classes)
H10. Timetables must have no gaps for students
(except of course for free days and inter-day free
time)
H11. Course lectures should be scheduled early
in the day (1st or 2nd timeslots), except for study

programs that have only evening hours (e.g.
masters studies).
H12. Students must have at least 2 classes per
day (except for free days)
H13. Students must have at maximum 4 classes
per day
Some of the timetable soft constraints derived
from experience of staff building the timetable
manually are:
S1. Related classes (classes for the same
discipline) should be scheduled either on different
days or in same day one after the other
S2. Teachers should not have more than 3
consecutive classes
S3. Some classes (e.g. lectures, seminaries)
should be taught in rooms assigned to the
particular study group (e.g. course lectures for the
students in the first year of the Maritime
navigation study program are taught in room
L352).
The H1, H2, H3, and H4 are mandatory hard
constraints of FET. They cannot be removed or
convert into soft constraints because the resulting
timetables might be invalid.
The H5 constraints refer to cohorts of Navy
students from different study programs that must
have a mandatory break in the 4th timeslot
(between 14 and 16 o’clock). There are in total 6
such constraints in our dataset.

Figure 1. Example of H5 hard constraint type

(mandatory lunch break)

The H6 constraints refer to cohorts (part-time
study programs, master study programs, etc.) that
have classes in the evening, starting with 5th
timeslot (after 16 o’clock). There are in total 19
such constraints in our dataset.
Both H5 and H6 constraints can be implemented
in FET using the “Students set not available
times” constraint (Fig 1), which is mandatory a
hard constraint.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

33
DOI: 10.21279/1454-864X-16-I1-005
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

FET uses a non-deterministic heuristic algorithm
that can produce different timetables on each run.
To get some comparable results between different
setups, we ran for this study 10 runs for each
setup and reported average and standard
deviation of runtimes required to produce a valid
schedule. Table 1 presents the average and
standard deviation of runtime needed to build a
correct timetable with various constraints.
Setup
(constraints)

No. of
constraints

Average
runtime

St.
dev.

H1-H4 2 4.40 0.52
H1-H5 8 4.40 0.52
H1-H4 and H6 21 4.60 0.52
H1-H6 29 4.60 0.52
H1-H7 51 6.20 0.63
H1-H8 57 7.00 0.82
H1-H9 58 7.20 0.79
H1-H10 59 12.50 1.72
H1-H11 60 6.60 0.52
H1-H12 78 6.10 0.87
H1-H13 79 6.80 1.35
H1-H13, S1 511 11.40 1.71
H1-H13, S1-S2 512 25.70 7.76
H1-H13, S1-S3 590 38.26 9.85
Table 1. Runtimes (in seconds) used for building

timetables with different constraints

The H7 constraints refer to cohorts of Navy
students from various study programs and full-
time students that must start classes in the 1st
timeslot of the day (at 8 o’clock). It is implemented
in FET as “Students must arrive early” constraint
(applied for every day). There are in total 22 such
constraints in our dataset. As can be seen from
Table 1, H5 and H6 did not increase runtime
significantly (compared to the previous
configuration, with H1-H4 constraints), but the H7
constraints did increase it by 35% compared to
the previous setup. We also attempted to
implement this constraint by using constraints on
activities (e.g. “Activities have a preferred starting
time” in FET), but the runtimes increased
significantly because the number of activities is
much larger than the number of cohorts, thus
needing more computational time to check if
constraints are satisfied.
The constraint H8 is similar to constraints H5, but
it applies to teachers instead of students and it
affects different timeslots. More exactly, the Board
of Directors of MBNA has regular meetings every
Monday morning at 8 AM (1st timeslot). The
teachers that are part of the Board must attend
these meetings and therefore cannot attend
classes. This constraint is implemented in FET
using the “Teacher not available time” constraint.
There are in total 6 such constraints in our
dataset.

The constraint H9 is used to create timetables in
which students do not have to wait idly for
mandatory classes due to optional classes. It is
implemented in FET using the “Activities end
student day” constraint. By using filters provided
by FET on the dataset (i.e. based on discipline
code) only one constraint instance is used for this
rule, but it affects 42 optional classes.
The H10 constraint forces valid timetables to offer
students compact schedules (i.e. without gaps) to
avoid students the discomfort of waiting between
classes or making multiple trips between home
and university during the same day. To be noted
that this constraint is compatible with H5, i.e.
mandatory lunch breaks are not considered as
gaps in the timetable. This constrained is
implemented in our dataset using one instance of
“Students max gaps per week” rule (set up with a
maximum of 0 gaps).
The H11 constraint is used to plan lectures in
morning hours, to maximize the performance of
the teaching process by capitalizing on students’
attention. This constraint affects 280 activities, but
it is implemented using activities filters in our
dataset and only one instance of the “Activities
have preferred starting times”. An interesting
aspect regarding to this constraint is that it
reduced the runtime required for finding a valid
solution (compared to the other constraints)
because it reduced with 66% the size of the
search space for valid timeslots for the 280 lecture
activities.
The H12 constraint forces valid timetables to plan
for students at least two classes per day (except
for free days). This is used to reduce the travel
overhead to and from university, relative to the
number of classes in that day (in combination with
H10). This constraint applies to 929 activities, but
it is implemented using only 18 FET constraints of
type “Students set min hours daily” and additional
filters on the activity data set.
The H13 constraint forces valid timetables to have
at maximum 4 classes for each student cohort.
This is a mandatory restriction to avoid student
fatigue. It is implemented in FET using the
“Student max hours per day” rule. This rule can
also be used for soft constraints, but in our
experiments for such case, FET required 10 times
more running time to find valid timetables.
Table 2 presents the average and standard
deviation of the conflicts that were caused by
broken soft constraints (these values are 0 for
experiments using just hard constraints, so they
are not included in the table).

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

34
DOI: 10.21279/1454-864X-16-I1-005
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Setup
(constraints)

No. of soft
constraints

Average St.
dev.

H1-H13, S1 432 94.43 10.66
H1-H13, S1-S2 433 106.12 14.32
H1-H13, S1-S3 511 120.12 16.25

Table 2. Conflicts caused by soft constraints on
the timetables

The S1 constraint is used to allocate a few days
between related classes (classes for the same
discipline). This extra time will give students time
to comprehend the topics discussed in class
before moving on to the next topic. However, if for
any reason related classes must be scheduled in
the same day, then the related classes should be
scheduled one after the other to avoid moving
students and teachers between rooms. It is
implemented using 432 “Minimum days between
activities” rules, with a variable number of days
(depending on the number of related classes
within two weeks) and an acceptance threshold of
95%.

Figure 2. Example of S2 soft constraint type
(maximum continuously teaching classes)

The S2 soft constraint attempts to limit to 3 the
number of consecutive classes that a teacher has
to attend in any day. Since this is a soft constraint
there are occasions when it is broken for some
teachers (e.g. teachers with a high load in a given
semester). It is implemented using one “Teachers
max hours continuously”, using a limit of 3 and an
acceptance threshold of 95% (see Figure 2).
The S3 soft constraints attempt to schedule
various classes in generic rooms (i.e. rooms
without specialized equipment or purpose), based
on different criteria (related to year and study
program of students). They are implemented
using filters on the dataset and 78 “Activity tag
preferred rooms” rules with 95% acceptance
threshold.
In addition to constraints mentioned above, the
actual timetabling setup for FET could also
consider the personal preferences of teachers
(free days, free hours, etc.). Currently, they can
only be implemented in FET as a hard constraint.
We did not include them in this study as these
requirements are not part of the timetabling policy
of the university and they are very subjective (i.e.
vary from semester to semester).

CONCLUSIONS
In this paper, we presented a case study on using open source software to implement the timetabling policy
of the university, with the goal of automatically generating valid timetables for teaching activities. The results
presented include runtime statistics and implementation details that can be used in other educational
institutions to obtain similar results. As we noted in previous sections, some of the timetabling constraints
can be implemented in different ways, leading to different outcomes (from minute to days of runtime, or from
equally good to impossible timetables).

BIBLIOGRAPHY
[1] Anmar Abuhamdah, et al. "Population based Local Search for university course timetabling problems."
Applied intelligence 40.1 (2014): 44-53.
[2] Hamed Babaei, Jaber Karimpour, and Amin Hadidi. "A survey of approaches for university course
timetabling problem." Computers & Industrial Engineering 86 (2015): 43-59.
[3] Rakesh P. Badoni, D. K. Gupta, and Pallavi Mishra. "A new hybrid algorithm for university course
timetabling problem using events based on groupings of students." Computers & Industrial Engineering 78
(2014): 12-25.
[4] Ruey-Maw Chen, and Hsiao-Fang Shih. "Solving university course timetabling problems using
constriction particle swarm optimization with local search." Algorithms 6.2 (2013): 227-244.
[5] César Covantes, and R. Rodr. "The Design of Multi-agent System for the Solution of School Timetabling
Problem." 2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI). IEEE, 2015
[6] K.L. Ertürk, G. Sengül, and M. Rehan. "How to Use Cobit Applications in Educational Institutes."
International Journal of Management and Sustainability 3.2 (2014): 42.
[7] Cheng Weng Fong, et al. "A new hybrid imperialist swarm-based optimization algorithm for university
timetabling problems." Information Sciences 283 (2014): 1-21.
[8] Joe Henry Obit, et al. "An Evolutionary Non-Linear Great Deluge Approach for Solving Course imetabling
Problems." IJCSI International Journal of Computer Science Issues 9.4 (2012): 1-13.
[9] Khalid Shaker, et al. "Hybridizing meta-heuristics approaches for solving university course timetabling
problems." Rough sets and knowledge technology. Springer Berlin Heidelberg, 2013. 374-384.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

35
DOI: 10.21279/1454-864X-16-I1-005
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

[10] Rafal Tkaczyk, Maria Ganzha, and Marcin Paprzycki. "AgentPlanner-agent-based timetabling system-
preliminary design and evaluation." System Theory, Control and Computing (ICSTCC), 2013 17th
International Conference. IEEE, 2013.
[11] Rafal Tkaczyk, Maria Ganzha, and Marcin Paprzycki. "AgentPlanner-agent-based timetabling system.",
Informatica 40.1 (2016).
[12] ***, FET software home page http://lalescu.ro/liviu/fet/

	PRACTICAL ASPECTS ON AUTOMATIC GENERATION OF UNIVERSITY TIMETABLES – A CASE STUDY

