
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

458
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

SOFTWARE SECURITY TECHNIQUES: RISKS AND CHALLENGES

Marius Iulian MIHAILESCU1

Stefania Loredana NITA2

Marian Dorin PIRLOAGA3
1Department of IT&C, LUMINA – The University of South-East Europe
2Department of Integrated Systems, Institute of Computers
3Military Technical Academy

Abstract: Because of the increasing number of applications that are working on-line, software security has
become an important aspect for software development process. The paper will present the main
mechanisms and features on which we have to stop when we are designing and implementing a software
application, such as sensitive information, execution of the program, and different ways of analyzing static
and dynamic code. We will explain two attacks techniques (analysis and tampering) that could occur on the
program and we will demonstrate how we can exploit some vulnerable points of access in the software
application. Based on the two types of attacks we will discuss about obfuscation techniques and perturbated
functions as a new approach to obfuscation and diversity.

Keywords: software security, obfuscation, perturbated functions, client-server, attacks

Introduction
Nowadays we are facing with a real challenge
regarding the security of software applications
within a company or a personal computer. When
we are talking about security for a software
application we have to concentrate on four
general questions: (1) where the application will
be installed (local network, business computer,
personal computer, cloud computing
environment)?; (2) who will have access to the
application (types of users)?; (3) how the
application will be accessed (authentication
methods)?; (4) which are the security techniques
used and where in the source code of the
application have been implemented and how?.
Behind of this process everything its quite
complicated and the goal of this paper is to
present a framework that need to be applied when
an application will be developed and deployed
within a business of personal environment.
Many companies are developing software
applications without a strategy for assuring and
finding the right security techniques for the
applications during the development process (e.g.
protecting the code against different attacks as we
will discuss later in this paper). Such strategy
could be Software Security Assurance (SSA),
which is known as the technique included in the
development phase of the software applications.
The SSA is operating at a level of security that is
very consistent with the potential threats that
could come out from the loss, inaccuracy,
alteration, unavailability, or misuse of the data and
resources that it uses, controls, and protects.
Naturally speaking, an adequate security is
necessary in this mixed and heterogeneous
environment. As we can point out, a software

contains secret, confidential or sensitive
information. Let’s take for example, the medical
files or credit card numbers. In order to protect
this data, there exist encryption and authentication
algorithms [2].
The paper will discuss about software obfuscation
and it will present some of the most common
techniques used in software development process
in order to protect the sensitive code and not only.
The paper is structured in seven sections
(excluding the introduction and conclusions
sections) as it follows: (Section 2) Obfuscation;
(Section 3) Software Protection Problems;
(Section 4) Attacks on Software; (Section 5) Code
Transformations; (Section6) The Proposed
Framework.
Obfuscation
PC programs speaks to the most complex
questions that have been developed by people.
Notwithstanding understanding a little program,
for example, a 10-line project, for example, the
one displayed in Fig. 1 can be amazingly
troublesome. The multifaceted nature of projects
had turned into the bane (and extremely well the
shelter) of the product business, and the
appeasement process have turned into the
fundamental objective of industry and scholarly.
Beginning from this, we can discover a few angles
not all that shockingly for both, theoreticians and
professionals which have been attempting to
"tackle this unpredictability for good" and use it
some way or another to ensure touchy data, and
obviously calculation. This is known as
programming confusion, and the exchange from
our article will associate with this idea.
Any cryptographic instrument, for instance
encryption or confirmation can be considered as

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

459
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

acknowledging many-sided quality security, yet
with programming jumbling, the general
population begin going for something more
yearning, suppose as a method for changing
subjective projects into something like muddled.

As per [21] the exploration on muddling is in an
,,embryonic stage". This announcement depends
on the way that there are no down to earth
effectiveness verification, yet we have just
hypothetical evidences which are arranged
extremely distant from the practice.

Fig. 1. A simple program that could be obfuscated in

Python

Fig. 2. A simple program used for code encryption

Software Protection Problems
We take a gander at programming assurance
from a designing perspective. Those procedures
does not fit into white-box model, as we have
depicted in Section 1.
In this section we will concentrate on a few
arrangements with respect to customer server
procedures, methods to obstruct programming
investigation, Collberg's obscurity changes, code
changes, and an exceptional discourse will be on
confusion measurements.
One of the goal is to give a cutting edge for
programming assurance methods. As a short
audit of the fundamental commitments, we can
express: a review of programming insurance
systems, an examination of strategies judged on
their capability to secure against investigation and
altering assaults, both static and element.

Fig. 3. The client-server model only distributes
access to services but not to the code, which is

running at the server side [1]

Client-Server Solutions
A standout amongst the latest systems keeping in
mind the end goal to ensure the basic
programming was to run it at the proprietor side
rather than the client side. This procedure or
system is referred to as programming as an
administration. For this situation, the basic
programming was not appropriated to untrusted
has, but rather it had been kept up on a very
much ensured server. The assurance of the
server is made from system, equipment, and
programming security. More often than not, the
code itself is not secured by some other
procedures. As per this setup, the administrations
are dispersed and not the product itself, as we
can see in Figure 1. Source code and the
executable code dependably will be on the server
side. In the event that we are an assailant, the
server will be seen as a black box which can't be
gotten to by sending reactions of solicitation and
getting.
The administration is currently dispersed over the
customers and the server. There are some focal
points, for example, the lessened size of the
server, just additional overhead is required to
keep up the correspondence between the
customer and the server. This perspective will
raise an alert cautioning on the way that this
procedure of correspondence will speak to the
fundamental issue. At a fast look, the said model
will empty the server, yet when we look practically
speaking the customer and the server require an
extremely escalated correspondence so that the
transfer speed will turn into a bottleneck.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

460
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Fig. 4. The partial client-server model splits code
into a critical and noncritical part: the critical part

is run at the server side; the non-critical part is run
at the client side [1]

Techniques to Thwart Software Analysis
Underneath, we will attempt to get a handle on
various strategies that can make an insurance
against investigation. The point of the most
procedures that are available today is to ensure
against figuring out [12], statically or powerfully
[13] [14].
A portion of the strategies said above can change
the code when the application is disconnected
from the net or amid the runtime process. For this
situation, both classes will increase current
standards for an assailant that desires to make an
appropriate examination, and obviously, it will
have the capacity to postpone an altering assault
also.

Fig. 3. Obfuscation Model [1]

3.1.1. Collberg’s Obfuscation Method for
Transformation

Object-situated writing computer programs is
connected all over the place since it offers diverse
focal points to peruse, adjust and amplify your
code.
Programming in modules will leave diverse tracks
into the executable and this will abuse these
imprints and follows keeping in mind the end goal

to remake the first source code [15]. As a short
history, when Java bytecode get to be
defenseless at decompilation [16], yielding the
first source code, the analysts had begun to
research the procedures with a specific end goal
to secure the first source code [17] [18].
One fascinating view point, is the real trick
proposed by Collberg's [19], where he
characterizes jumbling as a procedure of change
that endeavors to change a project into a
something comparative which is extremely hard to
figure out. The examination in view of code
obscurity applies one or more code changes
stages which will make the code more impervious
to investigation and altering. There is one single
hindrance which comprise in holding its
usefulness. For this situation, our code can be
circulated over various untrusted has without
expecting any sort of dangers that could be
figured out (see Figure 3).
As indicated by Collberg et al [20], we need to
concentrate on four fundamental classes of code
muddling changes:
- Lexical change;
- Control stream changes;
- Data stream changes;
- Preventive changes;
For more insights about these classes of code
obscurity changes, you may discover here [1],
beginning with page 30.
Attacks on Software
There are two fundamental classifications of
assaults on programming that could occur, for
example, static assaults and element assaults.
The primary commitments of this segment is to
show an assurance plan that will augments the
control stream chart leveling which is more
grounded against static control stream
investigation, three models that guide our plan
onto application situations, and some assaults to
delineate the quality of our plan.
Static Attacks
Static investigation which alludes to examinations
which don't include execution of the real code.
Compilers depend on static examination methods
with a specific end goal to streamline code. For
instance, consistent engendering and liveness
examination. Figuring out is utilized with a
malevolent intention.
Somebody has something and needs to
comprehend what it does, how it does this, and so
on. A figure out commonly begins examining an
item, by dismantling it, and after that tries to
comprehend it a little bit at a time, forming parts,
discovering designs, and so forth. In
programming, a fundamentally the same
procedure happens. Initial a double record is
dismantled. As a second step, the figure out might

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

461
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

pick to decompile the dismantled code into source
code. Lastly, he will assess the source code. Note
that the figure out can likewise essentially run the
code he acquired.
There are to systems which can be connected on
the code: dismantling and decompilation.
Disassembing
At the point when figuring out a double record, an
initial step comprises of dismantling the program
into a human justifiable configuration. The
dismantling step is the backwards of the gathering
stage in compilers. It makes an interpretation of
paired code into get together directions that
accommodate a specific CPU engineering. While
this is a static system, it is not an immaculate skill,
as useful disassemblers need to depend on
suppositions [1].
Decompilation
Decompilation is really a discretionary system that
the figure out can apply. On the off chance that an
aggressor needs to comprehend a whole
program, he may be faced with a huge number of
lines of gathering code. A decompiler essentially
searches for examples that can be deciphered
into source code. As abnormal state code is
wealthier and more conservative, it is frequently
less demanding to comprehend [1].
How to protect against static analysis
While encryption regularly is introduced as the
way to ensure programming statically, it really
moves the issue, simple to cryptography where
mystery of a message is moved to mystery of a
key. In an encoded executable record, unique
system code is scrambled, and a decoding routine
is added to the first program. Consequently, code
encryption is a type of self-changing code [23].
Really, the whole program is dealt with as
information, while the decoding routine remains
code. In the event that the last is anything but
difficult to examine, one can "break" the
unscrambling schedule, and decode the project.
Consecutive steps, for example, disassemblation
and decompilation permit to figure out it, as
though it were never secured.
Besides, not all designs at present bolster is self-
adjusting code.
Some working frameworks implement a Q⊕R
strategy as a system to make the misuse of
security vulnerabilities more troublesome. This
implies a memory page is either Writable
(information) or executable (code), yet not both.
Scrambled code should strife with infection
scanners because of its suspicious conduct
(malware additionally utilizes self-decoding code)
or because of false-positive marks matches, i.e.
bit designs that infection scanners check for. A
workaround for this impediment is the utilization of
a virtual machine [22]. On the off chance that

code is arranged in the nick of time, the virtual
machine can run it. In the event that the virtual
machine is mystery, and the byte code is
encoded, one needs to assault the virtual machine
first.
Dynamic Attacks
On the off chance that a contender succeeds in
extricating and reusing an exclusive calculation,
the results might be noteworthy. Besides, mystery
keys, classified information, or security related
code are regularly not expected to be dissected,
separated, stolen, or defiled. Indeed, even within
the sight of legitimate defends, for example,
licensing and cybercrime laws, figuring out
remains a significant danger to programming
engineers and security specialists.
By and large, the product is figured out, as well as
messed around with, as exemplified by the
multiplication of breaks for gaming programming
and DRM frameworks. In a branch sticking
assault, an assailant replaces a contingent hop by
an unequivocal one, compelling a particular
branch to be taken notwithstanding when it
shouldn't under the anticipated conditions. Such
assaults could majorly affect applications, for
example, authorizing, DRM, charging, and voting.
Code Encryption
The objective of encryption is to shroud data.
Initially, it was connected inside the setting of
correspondence, yet has turned into a procedure
to secure an expansive scope of basic
information, either for transient transmission or
long haul stockpiling.
All the more as of late, business instruments for
programming insurance have ended up
accessible. These devices need to shield against
assailants who can execute the product on an
open design and in this manner, yet in a
roundabout way, have entry to all the data
required for execution.
This area gives a diagram of runtime code
decoding and encryption.
One can likewise allude to this as a particular type
of self-adjusting or self-producing code.
Encryption guarantees the privacy of information.
With regards to paired code, this strategy for the
most part ensures against static examination and
altering. For instance, encryption methods are
utilized by polymorphic infections and polymorphic
shell code. Along these lines, they can sidestep
interruption.
Bulk Decryption
We allude to the strategy of decoding the whole
program immediately as mass unscrambling. The
decoding routine is generally added to the
scrambled body and set as the section purpose of
the system. At run time this routine unscrambles
the body and after that exchanges control to it.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

462
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

The decoding routine can either counsel an
inserted key or get one powerfully (e.g. from client
information or from the working framework). The
fundamental point of preference of such a system
is, to the point that the length of the project is
scrambled, its internals are covered up and along
these lines ensured against static investigation.
Another point of preference is that the encoded
body makes it hard for an aggressor to statically
change bits meaningfully. Changing a solitary
piece will bring about one or more piece flips in
the unscrambled code (contingent upon the
blunder proliferation of the encryption plan) and
hence one or more adjusted directions, which may
prompt project crashes or other unintended
conduct because of the weakness of parallel
code.
Notwithstanding, as all code is decoded at the
same time, an assailant can essentially sit tight for
the unscrambling to happen before dumping the
procedure picture to plate.
On-Demand Decryption
Rather than mass decoding, where the whole
program is unscrambled without a moment's
delay, one could build granularity and unscramble
little parts at the point in time when they are really
required. When they are no more required, they
alternatively can be re-encoded. This method is
for instance connected by Shiva, a paired
encryptor that utilizations muddling, hostile to
investigating systems, and multi-layer encryption
to secure x86 doubles utilizing the Mythical
person position.
On-interest unscrambling defeats the
shortcomings of uncovering all code free without a
moment's delay as it offers the likelihood to
decode just the fundamental parts, rather than the
entire body. The hindrance is an expansion in
overhead because of numerous calls to the
unscrambling and encryption schedules.
Attacks and Improvement
Our gatekeepers, which alter code contingent
upon other code, offer a few favorable
circumstances over the product protects proposed
by Chang and Atallah [24] and the from
introduced by Horne et al. [26]. A review is given
underneath:
Classification. To start with, all capacities are
scrambled statically, either by mass or by on-
interest encryption. An aggressor breaking down
code statically is compelled to first infer all
dynamic unscrambling keys and after that decode
the code. Besides, the length of code remains
scrambled in memory it is ensured against
memory dump assaults. With a decent plan it is
plausible to guarantee just an insignificant number
of code pieces are available in memory in
decoded structure. Thus, an aggressor dumping

memory would just have the capacity to assess
works part of the call stack. Exchanging off
security for execution, utilizing the hotness
heuristic, chooses more capacities for mass
encryption, consequently making them helpless to
element examination.
Alter resistance. Together with a decent reliance
plot, our watchmen offer assurance against
endeavors to adjust the project code. On the off
chance that a capacity is messed with statically or
even progressively, the system will produce
debased code at a later stage and in this way it
will in the end crash because of illicit guidelines or
yield questionable results. Besides, if the
adjustment produces executable code, mistakes
will in any case show up in different capacities. An
assailant utilizing a debugger to step-follow
through the system, may fall flat too. For instance,
the Unix debugger gdb [27] utilizes programming
breakpoints. These product breakpoints adjust the
stacked code in memory. In the event that the
comparing code is either hashed (to determine a
decoding key) or unscrambled, this will incite
flaws.
Imperviousness to an equipment helped
circumvention assault. An assault, proposed by
van Oorschot et al. [28], misuses contrasts
between information peruses and direction brings
to sidestep self-check summing code. The assault
comprises of copying every memory page, one
page containing the first code, while another
contains altered code. A changed bit captures
each information read and diverts it to the page
containing the first code, while the code brought
for execution is the adjusted one. Nonetheless,
later work of Giffin et al. [25] represents that self-
altering code can identify such an assault and
along these lines ensure against it. As our work
concentrates on self-encoding code, a kind of self-
altering code, the discovery system of Giffin et al.
likewise applies to our procedure.
Code Transformations
Business muddling programs frequently just
scramble identifier names and evacuate excess
data, for example, investigate data, in code. This
is entirely unimportant, however jumbling offers
significantly more potential outcomes. A decent
confusion exists out of one or more program
changes that change a project's control and
information stream in a way it gets to be harder to
investigations and figure out. However, the main
limitation for these changes is safeguarding the
usefulness of the first program. Consequently,
obscurity is an accumulation of numerous
systems that are helpful for project change,
confusion or randomization.
Besides, the greater part of these code changes
are not one way and it is difficult to choose where

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

463
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

to utilize which changes. Hence, a few parameters
measure the nature of a change reasonable for
code obscurity:

- The fundamental confinement remains
safeguarding the system usefulness.

- The fundamental objective of code
changes is maximal confusion of the first
program.

- A change needs as much imperviousness
to robotized assaults.

- A change should be as stealthy as could
reasonably be expected, too for static as
dynamic investigation methods.

- Increase in code size and execution time
should be minimized.

Regardless these systems don't promise
waterproof security, a blend of a few change
procedures can prompt adequate handy
assurance against figuring out and altering
assaults.
The Proposed Framework
In this section we will propose a framework that is
important to be connected in two phases of the
product improvement stages, the main stage is
investigation and the second one is outline. On
the off chance that the structure is connected with
accomplishment over the stages specified
beneath, then the usage stage will be done much
less demanding and the dangers to make security
gaps and breaks will be minimized.

Fig.4. A basic framework for software security

Our system depends on four basic steps. In the
event that the above steps (see Figure 4) are
tailed, we can maintain a strategic distance from a
considerable measure of bugs and security
blemishes.
It must be clear from the earliest starting point the
goal of the application, where it must be
introduced, what are the touchy information, the

client validation prepare, the encryption
calculations, how the encryption techniques are
utilized etc.
Every stride speaks to a dive deep into the
examination of the product.
The structure of the system is as per the following:

- First step – Software use cases. In this
phase the software developer will take out
the main user events and is trying to
characterize it in such waythat he will be
able to identify some preliminary sensitive
data.

- Second step – Use Case Diagram. In
this phase the software developer will see
how the events will interact between
them. Which are the users, what roles
they have. This is a good step because it
has a full overview on the entire system
and boundaries.

- Third parameter – Sequence
Diagram.Here the software developer
and analyst will have an overview over
the methods initiations and calls together
with parameters. Here the methods that
have vital parameters and contains
vulnerable data will be treated with a
maximum attention. In this phase, will
introduce the security constraints which
can be added on methods or variables.

- Forth parameter – Class Diagram.The
entire structure of the application can be
seen on this diagram. Nothing will escape
from this diagram. If this diagram is made
in a professional way, then the application
will be developed in the same way. In this
step the software analyst and developer
could add special encryption and
decryption methods, will identify the main
classes and interfaces that can be
exploited, different portions of code will be
identified and different security levels will
be attached. The security levels will
indicate how vulnerable the code is.

This framework is a little time consuming, but it is
worth it. We can keep the track of everything that
show and give us the possibility to issue a security
hole into the application.
The next step is to apply this framework
automatically. In order to achieve this, we will
implement as an add-on or plugin for NetBeans
IDE and Microsoft Visual Studio 2015. It will be
available to download it from NuGET at the end of
2016.

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

464
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

CONCLUSIONS
In the end, we will like to mention that our research for this paper was a real challenge especially when we
have tried to cover the most important aspects about software security techniques, and to point out the main
risks and advantages.
The main goal of the paper was achieved, but there are other many things that need to be mentioned and
just a simple article is not enough.
We have proposed a framework which is required to follow when a new software is designed and ready for
the implementation phase.

BIBLIOGRAPHY
[1]. Jan Cappaert, Code Obfuscation Techniques for Software Protection, Dissertation presented n partial
fulfillment of the requirements for the degree of Doctor in Engineering, Arenberg Doctoral School of Science,
Engineering & Technology, Faculty of Engineering, Department of Electrical Engineering (ESAT),
KatholiekeUniversiteit Leuven, 2012.
[2]. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of AppliedCryptography. CRC Press, 1996.
[3]. Java 2 platform security architecture.http://docs.oracle.com/javase/1.4.2/docs/guide/security/spec/security
spec.doc.html (consulted on April 22th, 2016).
[4]. The LLVM compiler infrastructure.http://llvm.org (consulted on February 10th, 2012).
[5]. The International Obfuscated C Code Contest.http://www.ioccc.org/ (consulted on April 22th, 2016).
[6]. Trusted computing group.http://www.trustedcomputinggroup.org/ (consulted on April 22th, 2016).
[7]. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princiles, Techniques,and Tools. Addison-Wesley, 1986.
[8]. B. Anckaert. Diversity for Software Protection. PhD thesis, GhentUniversity, 2008.
[9]. B. Anckaert, B. De Sutter, D. Chanet, and K. De Bosschere.Steganography for executables and code
transformation signatures. InC. Park and S. Chee, editors, ICISC, volume 3506 of Lecture Notes inComputer
Science, pages 425–439. Springer, 2004.
[10]. B. Anckaert, M. H. Jakubowski, and R. Venkatesan. Proteus:virtualization for diversified tamper-resistance. In
M. Yung, K. Kurosawa,and R. Safavi-Naini, editors, Digital Rights Management Workshop, pages47–58. ACM,
2006.
[11]. B. Anckaert, M. H. Jakubowski, R. Venkatesan, and C. W. Saw. Runtimeprotection via dataflow flattening. In
R. Falk, W. Goudalo, E. Y. Chen,R. Savola, and M. Popescu, editors, SECURWARE, pages 242–248.
IEEEComputer Society, 2009.
[12]. Reverse Engineering, https://en.wikipedia.org/wiki/Reverse_engineering
[13]. Static Program Analysis, https://en.wikipedia.org/wiki/Static_program_analysis
Dynamically vs. Statically, http://reverseengineering.stackexchange.com/questions/11512/dynamically-v
statically-linked
[15]. C. Cifuentes and K. Gough. Decompiling of binary programs. Software – Practice & Experience, 25(7):811
829, 1995.
[16]. T. A. Proebsting and S. A. Watterson. Krakatoa: Decompilation in Java(Does bytecode reveal source?). In
COOTS, pages 185–198. USENIX,1997.
[17]. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscatingtransformations. Technical Report #148,
Department of ComputerScience, The University of Auckland, 1997.
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/A4.pdf (consulted on
February 10th,2012).
[18]. D. Low. Java control flow obfuscation. Master’s thesis, University ofAuckland, New Zealand, 1998.
[19]. C. S. Collberg and C. D. Thomborson. Watermarking, tamper-proofing,and obfuscation - tools for software
protection, volume 28, pages 735–746, 2002.
[20]. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscatingtransformations. Technical Report #148,
Department of ComputerScience, The University of Auckland,
1997.http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/A4.pdf (consulted
on April 25th, 2016).
[21]. Boaz Barak, Hopes, Fears, and Software Obfuscation, COMMUNICATIONS OF THE ACM, vol. 59, no. 3,
March 2016.
[22]. T. Lindholm and F. Yellin. The Java Virtual Machine Specification.Addison-Wesley, 1999.
[23]. N. Mavrogiannopoulos, N. Kisserli, and B. Preneel. A taxonomy of selfmodifyingcode for obfuscation.
Computers & Security, 30(8):679–691,2011.
[24]. H. Chang and M. J. Atallah. Protecting software code by guards. InT. Sander, editor, Digital Rights
Management Workshop, volume 2320 ofLecture Notes in Computer Science, pages 160–175. Springer, 2001.
[25]. J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software self-checksumming via self-modifying
code. In Proceedings of the 21st Annual Computer Security Applications Conference (ACSA05), pages 23–32.
IEEE Computer Society, 2005.
[26]. B. G. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic self-checking techniques for improved

https://en.wikipedia.org/wiki/Reverse_engineering
https://en.wikipedia.org/wiki/Static_program_analysis
http://reverseengineering.stackexchange.com/questions/11512/dynamically-vstatically-linked
http://reverseengineering.stackexchange.com/questions/11512/dynamically-vstatically-linked

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST / DOAJ / DRJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Crossref /
Academic Keys / ROAD Open Access / OAJI / Academic Resources / Scientific Indexing Services / SCIPIO

465
DOI: 10.21279/1454-864X-16-I1-077
© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

tamper resistance. In T. Sander, editor, Digital Rights Management Workshop, volume 2320 of Lecture Notes in
Computer Science, pages 141–159. Springer, 2001.
[27]. R. Stallman, R. Pesch, and S. Shebs. Debugging with gdb: The GNU source-level debugger, 2010.
[28]. P. C. van Oorschot, A. Somayaji, and G. Wurster. Hardware-assistedcircumvention of self-hashing software
tamper resistance. IEEE Trans.Dependable Sec. Comput., 2(2):82–92, 2005.

	SOFTWARE SECURITY TECHNIQUES: RISKS AND CHALLENGES

