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Abstract: The main problem of the hydrodynamics of cavitation implosion of a single bubble, consists in 
pressure and velocity fields determination, including the collapse velocity of the bubble wall. The bubble 
surface is a discontinuity surface, and the overpressure produced by a bubble collapse are very great (many 
thousands bar) facts that suggests the opportunity of the distribution theory use. We use from in distribution 
of the equations for a non viscous, incompressible liquid. Using the Dirac filtering property some integral 
equations were obtained, giving the liquid velocity and pressure fields due to the bubble’s implosion. By 
analysis the theoretic and experimental phenomenon it establish the implicit function which describes this 
phenomenon. By application the Π  theorem for this implicit function it finds the criterion equation of 
phenomenon. Depending on operating condition various cavitation patterns can be observed on a body 
surface as travelling bubbles, attached sheet cavitation, shear cavitation or vortex cavitation. Leading edge 
attached partial cavitation is commonly encountered on rotor blades or on hydrofoil. It corresponds to the 
case for which a vapor cavity is attached in the vecinity of the leading edge and extends over a fraction of 
the foil surface. It generally takes places at incidence angles for which a leading edge pressure peak occurs 
and reduced below the liquid vapor pressure. At the early phases of development, leading edge partial 
cavitation is steady. 
 
INTRODUCTION 
The main problem of the hydrodynamics of 
cavitation implosion of a single bubble, consists in 
pressure and velocity fields determination, 
including the collapse velocity of the bubble wall.  
The bubble surface is a discontinuity surface, and 
the overpressure produced by a bubble collapse 
are very great (many thousands bar) facts that 
suggests the opportunity of the distribution theory 
use. 
THEORETICAL PROBLEMS 
Let’s write the equations of the mechanics of the 
light fluid at distribution. 
It is considered a closed surface ( ) 0, =trS  which 
delimits an internal domain 

iD  from an external 
domain ,eD  unlimited, filled with fluid. 
 
The local form of the continuity equation, valid in 
the absence of the discontinuous surfaces, is:  
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assuming that all the functions are ( )iDC 2  and  
( ).2 eDC . We use the formula:  
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where d  represents the local velocity of the 
mobile surface ( ) 0, =trS  and sδ  is the Dirac 
distribution associated with this surface. 
By introducing (2) and (3) in (1) and using (4) and 
(5) according to the vectorial analysis calculations 
we obtain:  
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Due to the fact that for each of the domains 
Di and De, the continuity equation remains valid, 
the formulas between brackets are null. 
Consequently, in distributions, the form of the 
continuity equation is valid anywhere 

( ) ei DtrSD ∪∪ ,  and it is: 
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Analogously (4), the Euler equation in the formula 
stated by Helmholtz, valid in the absence of the 
discontinuous surfaces has the following formula:  
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and in the presence of the discontinuous surface 
S:  
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valid in ,ei DSD ∪∪ where ( )mf  represents the 
field of the massic forces and [ ]Sp  is the pressure 
scale which separates the two domains. 
Observation: it is known from (1) that the effect of 
the viscosity in the cavitation phenomenon is very 
low, that is when considering the Euler equations, 
valid for the ideal fluids (light), is legitimate.  
Hypothesis 
It is considered an unlimited, incompressible, light 
fluid in which there is a spherical cavitation 
bubble, with the initial radius R0, empty on the 
inside. The fluid movement of the implosion of the 
bubble is considered irrational  ( ) 0, =trvrot   and 
the massic forces field is unvalued ( ) .0=mf


 

Using the spherical coordinates, originated in the 
centre of the bubble, symmetrically, is enough for 
the study of the radial direction, reducing to a one-
dimensional problem. 
The closed surface ( ) 0, =trS   is assimilated by a 
sphere with the equation r = R(t), the local velocity 
of the surface becomes ( ),tR  representing the 
implosion velocity of the bubble wall. 
The mathematic pattern 
In the spherical coordinates, the Dirac distribution 
(4) associated with the surface ( ) 0, =trS  ( )( )tRr =  
is: 

( )
( )( )
( )tR

tRr
trS 2, 4π

δ
δ

−
=  

In addition, in the spherical coordinates, the form 
of the vectorial differential operators which 
intervene in equation (6) and (7) is used:  

( )( ) ( ) ( )[ ]
( )( )
( )tR

tRr

tRtrvtrvr
rrt

2

2
2

4

,,1

π
δ

ρρρ

−

−=
∂
∂

+
∂
∂

   (8) 

( )( )[ ]
( )( )
( )

[ ] ( )( )
( )tR
tRrp

tR
tRr

tRvv
r
p

t
vv

t
v

S 22 44

1

π
δ

π
δ

ρ
ρ

−
+

−

=−
∂
∂

+
∂
∂

+
∂
∂ 

   (9) 

( ) ∞+∞→
= ptrp

r
,lim  where ∞p  is a constant 

( ) 0,lim =
+∞→

trv
r

,  

( ) ( )( )
( )

( )



<<
≥

=⋅=
tRr

tRr
rHtr e

tRe  0pentru     0
pentru    

,
ρ

ρρ  

eρ  is for the density of the fluid, ( ) ( )rH tR  is 
Haviside’s unit step function of the R(r) parameter.  
Observation: 0=

∂
∂

t
ρ  

The implosion velocity of the bubble ( )tRr = is 
given by Rayleight’s classic formula (non-linear 
differential equation) obtained in (2) especially 
using the kinetic energy theorem:  
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where ( ) 00 == ttRR . 
Calculus 
The difficulties derive from the fact that: the 
system of differential equations with partial 
derivates is non-linear and the distribution in the 
spherical coordinates depends on several 
parameters. 
The only advantage is that the equations are 
linked, that is from (8) may result ( )trv , and then, 
knowing ( ),, trv  from (9) may result ( )., trρ  
In order to apply the filtration property of the Dirac 
distribution: 
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analogously for ( )., trv  
Equation(8) becomes: 
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For the left part of the equation (8’) several calculi 
are necessary: 
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The equation (8’) becomes: 
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where ( )tR  and ( )tR  are known from (10). 
It can be observed that the integral depends only 
on the velocity values at the bubble wall. By 
applying the same treatment as before to the 
equation (9), we obtain:
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because ( )( ) ( )tRttRv =, the first formula of the right 
element is null. 
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USING THE SIMILITUDE THEORY ON TWO 
SCALES IN THE EXPERIMENTAL STUDY OF 
THE CAVITATION PHENOMENON 
There are situations when the possibilities of 
accomplishment of the pattern impose exceptions 
from the complete geometrical similitude, 
obtaining this way the distorted patterns which 
have horizontal lengths and vertical lengths 
reduced to different scales. 
Generally, the distorted patterns are imposed 
when the possibilities of practical accomplishment 
make impossible the exact conformation of the 
geometrical similitude between the pattern and 
the prototype, or when evolution of the 
phenomenon on the pattern made at a single 
scale would lead to a laminar movement instead 
of turbulent one which would make all the 
experiments difficult. 
A random physical phenomenon can be 
expressed in the most general way through a 
function of several physical proportions and the 
establishment of the connection between them is 

made (when the number of the physical 
proportions n≥ 5) through theorem Π. 
Any homogeneous function of several physical 
proportions which determine a physical 
phenomenon can always be reduced to a relation 
between dimensionless complex proportions of 
the following formula: 

0),........,,( 21 =ΠΠΠΦ −kn  
In the theory of similitude this function is called 
criteria equation and its establishment represents 
the first phase of the pattern study of a 
phenomenon. 
As it is known the cavitation problems have not 
yet been solved, theoretically or practically, 
worldwide, although researches are made to this 
respect. 
If we want to study this phenomenon through the 
similitude theory, we should previously set the 
physical proportions that intervene within the 
evolution of the cavitation phenomenon on the 
rotor of the axial pumps. 
The criteria equation for the cavitation 
phenomenon produced at the wheels of the axial 
pumps 
After theoretical and experimental researches 
made until now, it has been established that the 
cavitation phenomenon at the rotor of the axial 
pumps has the following implicit function: 
f ( ρ ,n, D,T, p∆ ,h, maxd ,g,η ,v, m, z)=0             (13) 
where: 
ρ  - water density 
n - wheel speed 
D - wheel diameter 
T  - wheel pusher 

vppp −=∆ -pressure distribution on the blade 

vp –water vaporization pressure at certain 
temperature; 
h - immersion of the wheel axis on the water 
surface 

maxd  - maximum thickness of the wheel blade; 
g - gravitational velocity g = 9,81 m/s2;  
η  - water kinetic viscosity ; 
v - current velocity through the rotor disk; 
m - air volume dissolved in water; 
 z-  number of the wheel blades.  
The physical proportions of this implicit function 
actually represent the physical proportions which 
this phenomenon depends on.  
In order to apply theorem Π  to the implicit 
function, we first write the dimensional matrix of 
the variables (number of rotor blades z is the 
same both as pattern and prototype). 
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out of which we obtain the equations system: 
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We sort out the main variables of the system: 
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System (3) is undetermined for solving, so we 
apply the Cramer rule and we obtain the solution 
matrix as it follows: 

 

10000000301
01000000110
00100000211
00010000120
00001000100
00000100100
00000010221
00000001421

8

7

6

5

4

3

2

1

max

−−Π
−−Π
−−−Π
−−Π
−Π
−Π
−−−Π
−−−Π

∆ mvgdhpTDn ηρ

  (17) 

Out of the solution matrix we obtain the following 
similitude criteria: 
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The criteria equation in which we shall include the 
number of blades z, shall be as it follows: 
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If we respect the geometrical similitude after a 
single scale, it is possible that the thickness of the 
wheel blade and the immersion of its axis to 
reduce a lot, therefore it is possible that the 
pattern not to be able to be used for 
determinations, the results including too many 
errors. 
Because of this, it is more advantageous and safe 
to create the distorted blade patter (at two scales), 
which allows more accurate results. 
It can be determined the pattern law in the case of 
similitude at two scales, by randomly choosing the 
scale of the parallel lengths with the blade 
diameter and the scale of the parallel lengths with 
the thickness of the blade. 
EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

 

An investigation of leading edge partial cavitation 
was performed in Romania (ICEPRONAV – 
Galați) including the conditions of cavitation 
inception, the cavitation patterns together with 
cavity length measurements. The investigation 
was enhanced by instantaneous wall-pressure 
measurements using an instrumented blade of 
rotor equipped with seventeen wall-pressure 
transducers mounted into small cavities, (fig 1). 

 
 

 
 a)                                    b) 

 
Fig. 1,  a) Transducer cavity,  b) Location of 
the pressure transducers, filled symbol is on 
the pressure side, A referees to an 
accelerometer, unit in millimeter 

 

 
Fig. 2 

 
All the experiments fitted with a 1m long and 
0,192 m wide square cross test section. In this 
device, velocities of up to15 m/s and pressures 
between 30 mbar and 3 bar can archieved. The 
designed blade for this project is a 0,191 mm 
span two - dimensional cambered foil of the 
NACA 66 . Several experimental results have 
been obtained. Figure 2 shows the inception 
conditions and the various patterns detected on 
the suction side of the foil versus the cavitation 
number and the angle of incidence. The inception 
conditions are also compared to the theoretical 
values of the opposite of the minimum pressure 
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coefficient on the suction side. Partial cavities of 
intermediate length (l*lower than about 0,5) have 
a relatively stable behavior with weak variation of 
the cavity closure while shedding U-shaped vapor 
structures in the wake. In that situation the cavity 
length was measurable (see fig. 3). As shown on 
fig. 4, the liquid-vapor interface has a glossy 
aspect over a short distance from the leading 
edge indicative of a laminar boundary layer 
developing on the interface. The extent of the 
laminar flow was found to be dependent on the 
velocity (Figures 4.b and 4.c for the same 
cavitation number but two velocities). Further 
away the interface becomes wavy and unstable 
over a large fraction of the cavity length. When the 
cavity becomes large, typicalli l/c larger than 
about 0,5, it exhibits a pulsating behavior while 
shedding larger vapor-filled structures. The 
transition is relatively well represented by the 
straight line shown on fig 1. 

 

 
Fig. 3 Cavity length as a function of  

α
σ , 

 Re = 8 610⋅  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4. Photographs of leading edge partial 
sheet cavitation, NACA 66-12% - 100mm foil, 
flow is from the left, α = 6, a) Re = 8 610⋅ , 98,1=σ , 
l/c= 0,045 
b) Re = 8 610⋅ ,σ = 1,31, l/c=0,325. c) Re=0,4 610⋅ , 
σ = 1,30, l/c=0,205. 
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CONCLUSIONS 
Used in distributions, the equations form in the fluid mechanics and the filtration property of the Dirac 
distribution, several integral formulas regarding the cavitational implosion are obtained. 
The mathematic pattern, which only describes the fluid movement, can only indicate something about the 
hydrodynamic effects of the cavitational implosion, the thermal and electrochemical effects, experimentally 
presented, can be analogously analyzed.  
After knowing the non dimensional complex numbers which form the criteria equation, before making the 
pattern of the studied phenomenon we shall establish the connections between the scales of the physical 
proportions which determine these complex numbers, that is we shall establish the pattern law. 
Being familiar to the distorted pattern law, we can transfer the proportions results obtained on the pattern, on 
the prototype. 
We notice that not all the similitude criteria have the same importance in the evolution of the cavitation 
process of the axial pumps blades. The most important criterion, decisive in the cavitation process, is the 
one in which the vaporization pressure intervenes pv. 
The cavity lenght does not change significantly, the liquid – vapor interface is smooth and has a glossy 
aspect along a short distance from the leading edge. At the end of the cavity it breaks partially into small 
bubbles. As the cavity expands, the liquid – vapor interface become distorted, wavy and unstable yielding to 
breakup and unsteadiness. At this stage significant variations of the location of the cavity closure point are 
observed while shedding vapor structures called „cloud” cavitatin. This process induces high - level pressure 
pulses and is known to be one of the most destructive forms of cavitation. 
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