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Abstract: Statistical Physics and Information Theory commonly use Shannon's entropy which measures the 
randomness of probability laws, whereas Economics and the Social Sciences commonly use Gini's index 
which measures the evenness of probability laws. The problem of shifting from the "principal of maximum 
entropy" to the more general "principal of maximum heterogeneity", and explore the maximization of 
statistical heterogeneity was studied by Eliazar and Sokolov [2010].We propose the framework of entropy 
pricing theory in this regard, introduced by Gulko [1996]. We consider various entropy maximization 
problems to obtain the risk neutral densities based on Eliazar and Sokolov methodology.  
Keywords: Information Theory, Gini’s Index, Shannon Entropy, Risk Neutral Densities. 
 
INTRODUCTION 
The entropic reasoning allows us to approach two 
different ways of quantifying the statistical 
heterogeneity of risk-neutral price distribution. The 
Gin’s index is a measure of statistical dispersion 
and measures the evenness of probability laws 
where entropy measures the randomness.  
The application of entropy in finance can be 
regarded as the extension of both information 
entropy and probability entropy. Since last two 
decades, it has become a very important tool for 
the methods of portfolio selection and asset 
pricing. The famous Black-Scholes model [1] 
assumes the condition of no arbitrage which 
implies the universe of risk-neutral probabilities. 
The uniqueness of these risk-neutral probabilities 
is very crucial. The stock price process is 
controlled by Geometric Brownian Motion (GBM) 
in Black and Scholes model and in this framework 
stochastic calculus is vital. The Entropy Pricing 
Theory (EPT) was introduced by Les Gulko as an 
alternative method for the construction of risk-
neutral probabilities without relying on stochastic 
calculus [9,10]. Recently Preda & Sheraz have 
introduced new approach to obtain the risk neutral 
densities [16].  
The Principle of Maximum Entropy (MEP) has 
been extensively used to estimate the distribution 
of an asset from a set of option prices. The 
problem of shifting from the "principal of maximum 
entropy" to the more general "principal of 
maximum heterogeneity", and explore the 
maximization of statistical heterogeneity was 
studied by Eliazar & Sokolov [6]. The maximum 
entropy principle was used to retrieve the risk-
neutral density of future stock risks or other asset 
risks [19]. The Renyi entropy [17] generalizes the 
frequently used Shannon entropy [18] and it has 
been used for option price calibration [5]. 
Recently Preda et al. used Tsallis and Kaniadakis 
entropy measures for the case of semi-Markov 
regime switching interest rate models. Preda et al 
have also introduced the new classes of Lorenz 
curves by maximizing Tsallis entropy under mean 
and Gini’s equality and inequality constraints 
[14,15]. For maximum entropy distribution of 
asset returns, application of entropy maximization 
problems, and others can be found in [3, 4,13]. 
 

 
Two complimentary problems are discussed in 
this article: entropy maximization for specified 
Gini’s index value and Gini’s maximization for 
specified Shannon entropy. In Section 2 we 
present the problem formulation and 
preliminaries. We present our main results for 
risk-neutral densities based on Eliazar & Sokolov 
problems in the framework of entropy pricing 
theory of Les Gulko. Section 4 concludes our 
results and future directions.  
PRELIMINARIES 
In this section we use the concept of EPT [9, 10] 
The term market belief is vital in option pricing 
and the current price of any risky asset indicates 
this belief. The future picture of the market up 
(down) reflects a state of maximum possible 
uncertainty; therefore market belief for the future 
performance of an efficient price is characterized 
by maximum uncertainty. Consider a risky asset 
on time interval[0,T] . Let TY  be asset price 

process of TS at future time T , G as state 
space, a subset of real line ,  g(S )TR the 
probability densities on , ( )Tf SΡ efficient market 
belief and ( )H g the index of market uncertainty 
about TY . The ( )H g is defined on the set of 
beliefs ( )Tg S therefore the efficient market belief 

( )Tf S maximizes ( )H g . 

We can determine ( )Tf S given ( )H g with some 
relevant information about current price of S . The 
index of the market uncertainty about TY as a 
Shannon entropy[18], can be written as: 

( )( ) ln  gg
TH g E Y = −                                  (1)                         

In the above equation ( )H g is a functional 
defined on ( )Tg S , ( )Tf S which maximize 

( )H g is called the entropy of random variable 

TY and used to measure the degree of 
uncertainty of ( )Tg S . The maximum entropy 
characterizes the market beliefs regardless of the 
subjective risk preferences and it is useful to find 
the risk neutral beliefs in incomplete arbitrage 
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free markets. The maximum entropy market 
belief ( )Tf S  as a solution to the maximum 
entropy problem can be written as follows: 

( ){ }arg  max ,f H g g G= ∈               (2) 
Eliazar and Sokolov [6] have studied the problem 
of shifting Shannon’s entropy to Gini.s index 
which is called statistical heterogeneity. There 
are different approaches that estimate statistical 
heterogeneity such as concepts of dispersion, 
entropy and equality i.e. measuring the evenness 
of the probability laws. The approach of equality 
or measure of evenness is called Gini’s index in 
the field of economics and social sciences. 
Mathematically Gini’s index is given by: 
 

( ) ( )
2

0

1      1
x

G f f z dz dx
µ

∞ ∞ 
= −   

 
∫ ∫    (3)                      

where  µ  is the mean and in our frame work we 

replace it by 
S
P

. We present our results of risk 

neutral densities using Eliazar & Sokolov [6]  
approach in another frame work. 
The Gini’s distance of a probability law controlled 
by the probability density function ( )Tg S , where 

TS−∞ < < ∞  is given by: 

( ) ( ) ( )1 2 1 2 1 2

1
2 T T T T T TD g S S g S g S dS dS
+∞ +∞

−∞ −∞

= −∫ ∫       (4)                                                                                  

where ( )D g is the average distance between 
two independent random variables whose 
probability law is controlled by the probability 
density function ( )Tg S  where TS−∞ < < ∞ . 
Gini.s distance is positive and in the case of 
probability laws supported on the positive half-
line the connection between Gini.s index ( )G g  

and Gini.s distance ( )D g is: 

( ) ( )
1                   G g

D g
=                         (5) 

The first variation of the functional ( )D g is given 
by [6]. 
 

 ( ) ( ) ( ) ( ) ( )*
*

1
2

                           

T

T

S

T T
S

D g G u du G u du S dSχ χ
+∞ ∞

−∞ −∞

 
  ∆ = +    
∫ ∫ ∫  

(6) 
where ( )TSχ is an arbitrary test function and 

TS−∞ < < ∞  therefore: 

( ) ( )

( ) ( )

* / /

/ /
*

,  -

,    -

u

u

G u g u du u

G u g u du u

−∞
∞

= ∞ < < ∞

= ∞ < < ∞

∫

∫
         (7) 

RISK NEUTRAL DENSITIES 
We consider the Shannon’s entropy maximization 
problem as the first case. We suppose that all 
expectations are also well defined and underlying 
optimization problems admit solutions for some 
continuous cases. We discuss the law introduced 
in [6]. This law maximizes Shannon’s entropy 
within the class of probability laws supported on 

the real line TS−∞ < < ∞with mean 
S
P

µ =  

and a given dispersion, where S and P belong to 
the prior information set which indicate risky asset 
and riskless bond price respectively. gE  denotes 
expectation relative to risk neutral density 
( )Tg S  and TS is the asset price at time T . 

THEOREM 3.1 The risk neutral density  ( )Tg S  
which solves the Shannon entropy maximization 
problem subject to the given constraints: 

( ) lng
T

g
E g YMax  −    

Subject to  

{ }

[ ]

1                   C-1

                     C-2               

, 0   C-3

T
g

Y

g
T

r
g

T

E I

SE Y
P

SE Y r
P

δ

  =  

=

 
 − = >
  

 

Then the unique solution of the risk neutral 
density is given by: 

 1 2 3( ) exp 1
r

T T T
Sg S S S
P

λ λ λ
 

= − − − − − 
  

 

where 1 2 3, ,λ λ λ are Lagrange multipliers and 
determined by using the given constraints C-1, C-
2 and C-3.  
Proof: We can proof the above result by using the 
calculus of variations for optimization of 
functionals (see Luenberger -1969, Borwein -
2003, Eliazar &Sokolov-2010).  
Therefore the Lagrangian ( ),L g λ  can be written 
as: 
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( ) ( ) { }( )
[ ]

1

2 3

, ln 1  +
T

g g
T Y

r
g g

T T

L g E g Y E I

S SE Y E Y
P P

λ λ

λ λ δ

  = + −   

     + − + − −         

 

where 1 2 3, ,λ λ λ  are Lagrange multipliers and 
we write the first variation ( )A g of ( ),L g λ : 

( ) ( ) ( )
b

T T T
a

A g S g S dSη= ∫  

The first variation ( )A g is given by: 

( ) ( ) ( ) ( )
b

T T T
a

A g S S dSχ η χ ∆ =  ∫  

where ( )TSχ is a arbitrary test function and 

Ta S b< < . Let ( ),a b an interval 
,a b−∞ ≤ ∞ ≥ and consider the convex functional: 

( ) ( )( ) ( )ln
b

T T T
a

H g g S g S dS= ∫  

where ( )Tg S is a probability density function 

then first variation of ( )H g : 

( ) ( ) ( ) ( )1 ln
b

T T T
a

H g g S S dSχ χ   ∆ = +   ∫  

Now using ( ) ( )A g χ ∆   and ( ) ( )H g χ ∆   , 

we can write the fist variation of ( ),L g λ : 

( ) ( ) ( )( )

( )

1 2

3

, [1 ln +

                            ]

                            

T T

r

T T T

L g g S S

SS S dS
P

λ χ λ λ

λ χ

+∞

−∞

 ∆ = + + + + 

+ −

∫

 
Now equating this first variation equal to zero we 
get: 

( )( )

( )

1 2 3

1 2 3

1 ln 0

exp 1

r

T T T

r

T T T

Sg S S S
P

Sg S S S
P

λ λ λ

λ λ λ

+ + + + − =

 
= − − − − − 

  

 

In the next theorem 3.2 we extend the previous 
result of theorem 3.1 for the case of weighted 
entropy. The weighted entropy was first defined 
by Guiasu [8], considering the two basic concepts 
of objective probability and subjective utility. 

 

THEOREM 3.2. The risk neutral density  ( )Tf S  
which solves the Weighted-Shannon entropy 
maximization problem: 

 ( ) ( ) lng
T T

g
E u Y g Ymax  −    

Subject to the given constraints C-1,C-2,C-3 and 
u 0> . Then the unique solution is given by: 

 

( ) ( )

1 2 3exp 1
r

T T

T
T

SS S
P

f S
u S

λ λ λ
 
− − − − − 
  =  

Proof: We can proof the result by using the 
calculus of variations for optimization of 
functionals see Luenberger). Now consider the 
function:  

( ) ( ) 1 2 3, ln
r

T T T T
SF f S u S f f S S
P

λ λ λ= − + + + −

where 1 2 3, ,λ λ λ  are Lagrange multipliers. The 
necessary condition for an extremum is the Euler-
Lagrange equation given by: 

/
0

T

F F
f S f

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

 

Since ( ), TF f S is independent of /f , the 

derivative of ( )Tf S ad Euler-Lagrange equation 
reduces to: 

( ) ( ) 1 2 3ln 0
r

T T T T
Su S u S f S S
P

λ λ λ− − + + + − =

 
Thus we obtain the required result by using the 
above equation and the proof is complete. 
In the next theorem we consider the Gini’s 
maximization problem and replacing randomness 
by evenness as the underlying measure of 
heterogeneity. 

THEOREM 3.3. Consider the following entropy 
maximization problem: 

 ( ) { } ( ) ( ),   1
T T

g
T T TY SG S E I G S G S>

 = = −   

which is equivalent to the convex optimization 
problem: 

 

( )2

0

min T TG Y dY
∞

∫  

Subject to C-1,C-2 and C-3 as defined in the 
theorem 3.1 then the solution of risk neutral 
density is given by: 
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( ) ( )3 1
2

r

T T
Sg S r r S
P

λ
= − −  

Proof: The corresponding Lagrangian can be 
written by using calculus of variations for 
optimization of functionals (see Luenberger-1969, 
Eliazar & Sokolov-2010). 

( ) ( ) { }( )

[ ]

2
1

0

2 3

, 1  +
T

g
T T Y

r
g g

T T

L g G S dY E I

S SE Y E Y
P P

λ λ

λ λ δ

∞

 = + − 

     + − + − −         

∫
 

The above problem is very similar to the theorem 
3.1 ,where 1 2 3, ,λ λ λ  are Lagrange multipliers and 
we write the first variation of ( ),L g λ : 

 

( ) ( ) ( )

( )

/ /
1 2 3

0 0

, 2 .

                            

TS r

T T T T

T T

SL g G S dS S S
P

S dS

λ χ λ λ λ

χ

+∞  
   ∆ = + + + −    

∫ ∫

 
Thus we get: 

( )/ /
1 2 3

0

2 0
TS r

T T T T
SG S dS S S
P

λ λ λ+ + + − =∫  

Differentiating twice both sides of the above 
equation we get the solution and the proof is 
complete.  
Now we consider the Entropy-Gini-Maximization 
problem by following the law that maximizes 
Gini’s index within the class of probability laws on 

the positive half line of 0TS ≥  with mean 
S
P

and 

given the Gini index. 
THEOREM 3.4. Consider the following Entropy-
Gini-Maximization problem: 

( ) lng
T

g
E g Ymax  −    

Subject to the constraints C-1,C-2 and a new 
constraint C-4: 
 

( )2

0
                C-4TTG S dS γ

∞
=∫  

Then G  satisfies the differential equation given 
by: 

( ) ( ) ( )2/
2 3=c- G GT T TG S S Sλ λ−  

where c is constant of integration  and the 
solution of differential equation is given by: 

 ( ) ( ) ( )3 1 3

1G
exp 1T

T
S

c c S c
=

− + −
 

Where 1c and 3c are positive real valued 
parameters and 

( ) ( ) ( )3 3
1 3 1 1 3 3

3

ln
,  ,c = - ,c

1
c c

c cS c
P

ψ
ψ λ λ= = = −

−

 
Proof: Following the method of theorem 3.1 we 
can write the Lagrangian: 
 

( ) ( ) { }( )
[ ] ( )

1

2
2 3

0

, log 1  +
T

g g
T Y

g
T T T

L g E g Y E I

SE Y G S dS
P

λ λ

λ λ γ
∞

  = + −   

  + − + −       
∫

 

     
The above problem is very similar to the theorem 
3.1 where 1 2 3, ,λ λ λ  are Lagrange multipliers and 

we write the first variation of ( ),L g λ : 

( ) ( ) ( )( ) ( )

( )

1 2 3
0 0

, 1 ln 2 .

                            

TS

T T

T T

L g g S S G u du

S dS

λ χ λ λ λ

χ

∞  
   ∆ = + + + +    

∫ ∫

 
Therefore we get: 

( )( ) ( )1 2 3
0

1 ln 2 0
TS

T Tg S S G u duλ λ λ+ + + + =∫  

Differentiating the above equation we get: 
  

( )
( ) ( )

( ) ( ) ( ) ( )

/

2 3

/
2 3

2 0

2 0

T
T

T

T T T T

g S
G S

g S

g S g S G S g S

λ λ

λ λ

+ + =

+ + =

 

Since, 

( ) ( ) ( )2/ /
2 3 0T T TG S G S G Sλ λ− − − =  

Therefore we get: 

( ) ( ) ( )2/
2 3T T TG S G S G S cλ λ+ + =                          

(i) 
where c is a constant of integration. The solution 
of equation can be found using Riccati differential 
equation see [5] for more details.  
We can write equation (i) for its solution: 

( ) ( ) ( )2/
0 1 2T T TG S c c G S c G S= + +  

where 0 1 2, ,c c c  are constants and defined w.r.t  
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Lagrange multipliers 1 2 3, ,λ λ λ . We have 

boundary conditions ( )0 1G = and 

( )
0

lim 0
T

TS
G S

→
= , Since ( )TG S is a survival 

probability function then coefficient 0 0 0c λ= =  
and the given equation reduces to the Bernoulli 
form: 

( ) ( ) ( )

( )
( )

( )

2/
1 2

/
1

1 22

i.e.
T T T

T
T

T

G S c G S c G S

G S
c G S c

G S
−

= +

− =

 

 
Let us suppose: 

( ) ( )1
2

1 2

1

i.e.,

T
T

T T

T

dG SdyG S y
dS G dS

dy c y c
dS

− = ⇒ = −

+ = −

 

We get the solution of the above differential 
equation: 

( )

( )

1

1

1

32

1

1 32

1

32

1

1

T

T

T

c S

T c S

T

c S

ccy
c e

ccG S
c e

G S cc
c e

−

= +

= +

=
+

 

Using ( )0 1,G = we get 2 2
3 3

1 1
1 1c cc c

c c
= − ⇒ − =  

Therefore we can write: 

( ) ( ) ( )3 1 3

1
exp 1T

T
G S

c c S c
=

− + −
 

The corresponding mean is given by: 

( )

( )

3

30

3
3

3

ln 1. ,
1

lnHence, 
1

T T
cS G S dS

P c p

cc
c

µ

ψ

∞

= = =
−

=
−

∫
 

and we get the value of 
( )3

1
c

c S
P

ψ
=  

 
THEOREM 3.5. Consider the following Entropy—
Gini-Maximization problem: 

( )2

0
 TT

g
G S dSmax

∞

∫  

Subject to the constraints C-1,C-2 and a new 
constraint, C-5,  i.e. the Shannon entropy: 
 

( )ln                 C-5g
TE g Y ξ  =   

Then solution satisfies the differential equation 
given by: 
 

( ) ( ) ( )22/

3 3 3

1= - G GT T T
cG S S Sλ
λ λ λ

−  

 
Proof: Following the method of theorem 3.1 we 
can write the Lagrangian: 
 

( ) ( ) { }( )
[ ] ( )( )

2
1

0

2 3

, 1  +

log

T
g

T T Y

g g
T T

L g G S dS E I

SE Y E g Y
P

λ λ

λ λ ξ

∞

 = + − 

   + − + −    

∫
 

 
1 2 3, ,λ λ λ  are Lagrange multipliers and we write 

the first variation of ( ),L g λ : 

( ) ( ) ( ) ( )( )( )

( )

1 2 3
0 0

, 2 1 ln .

                            

TS

T T

T T

L g G u du S g S

S dS

λ χ λ λ λ

χ

∞  
   ∆ = + + + + +    

∫ ∫

 
Therefore we get: 

( ) ( )( )( )1 2 3
0

2 1 ln 0
TS

T TG u du S g Sλ λ λ+ + + + + =∫  

Differentiating the above equation we get: 
  

( ) ( ) ( )/
3 2 2 ( ) 0T T T Tg S g S G S g Sλ λ+ + =  

which is equivalent to , 

( ) ( ) ( )( )/2/ / /
3 2 3 0T T TG S G S G Sλ λ λ− − − =  

Therefore we get: 

( ) ( ) ( )2/
3 2 3T T TG S G S G S cλ λ λ+ + =  

where c is the real valued constant and therefore 
we have the differential equation given in the 
statement of the theorem and the proof is 
complete. 
Now we present our frame work to discuss the 
law that maximizes the Gini’s distance within the 
class of probability laws supported on the real 

line TS−∞ < < +∞  with mean 
S
P

 and given 

dispersion.  
THEOREM 3.6. Consider the following 
optimization problem: 
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( )max  D g  
Subject to the constraints C-1,C-2 and C-3 then 
the solution of risk neutral density is given by: 

( ) ( )
2

31 ,   2
r

T T
Sg S r r S r
P

λ
−

= − − − >  

Proof: We can proof the above results by 
following the theorem 3.1. Therefore the 
Lagrangian ( ),L g λ  can be written as: 

( ) ( ) { }( )
[ ]

1

2 3

, 1  +
T

g
Y

r
g g

T T

L g D g E I

S SE Y E Y
P P

λ λ

λ λ δ

 = + − 

     + − + − −         

 

1 2 3, ,λ λ λ  are Lagrange multipliers and we write 

the first variation of ( ),L g λ : 
 
 

( ) ( ) ( ) ( )

( )

*
*

1 2 3

1, [
2

]

                            

T

T

S

S

r

T T T T

L g G u du G u du

SS S S dS
P

λ χ

λ λ λ χ

+∞ ∞

−∞ −∞

 ∆ = + + 

+ + + −

∫ ∫ ∫

 

Now equating this first variation equal to zero we 
get: 
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Now differentiating the above equation twice we 
get the required solution and the proof is 
complete 
We discuss another problem which maximizes the 
Gini’s index given the Shannon entropy with the 
class of probability laws supported on the real line 

TS−∞ < < +∞  with mean 
S
P

. 

THEOREM 3.7. Consider the following 
optimization problem: 

( )                       max  D g  
Subject to the constraints C-1,C-2 and C-5 then  

*G  is the solution of the differential equation 
given by: 
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Proof: The corresponding Lagrangian can be 

written as: 
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1 2 3, ,λ λ λ  are Lagrange multipliers and we write 

the first variation of ( ),L g λ : 
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Therefore we get: 
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Differentiating the above equation we get: 
( ) ( ) ( )( ) ( )/

3 2 *2 2 1 2 0T T T Tg S g S G S g Sλ λ+ + − =
 
 This equation is equivalent to    

( ) ( ) ( ) ( )( )/2/ / /
3 2 * *2 1 2T T TG S G S G Sλ λ− − + +  

Now we get:  
 

( ) ( ) ( ) ( )2/
22 1 2T T TG S G S G S cλ− − + + = −  

where c is the real valued integration constant 
and we have the following equation: 
 

2/ 2

3 3 3
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2 2 2
cy y yλ
λ λ λ

+
= − +  

We can solve the above equation using the 
method described in theorem 3.4. 
 

CONCLUSIONS  
We have studied some entropy maximization problems of Eliazar & Sokolov [6]. We have introduced the 
frame work of entropy pricing theory in this regard to find out risk neutral densities. The importance of risk 
neutral densities in modern financial literature is vital which provide a comprehensive package without 
specifying any model based on stochastic calculus.  
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