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Abstract: The paper introduces two measures for the informational properties of regression models which 
deal with a random vector (response, covariates) and are based on the assumption of the existence of an 
intrinsic relationship between covariates (causes) and response (effect). We define these measures in terms 
of conditional Shannon entropy  and conditional α-Renyi entropy. The regression models we address are 
logistic semiparametric regression models with binary response (LSpRModelsBR) and with two exogenous 
covariates. Conditional entropies are defined and calculated for discrete, binary covariates and for 
exponential distributed covariates, the issue of nonparametric estimation of the conditional quadratic Renyi 
entropy is discussed and we report the results of a simulation study. Based on their properties and on our 
simulation results, we conclude that these conditional entropies are able to measure the intensity of the 
connection "response ~covariates" within a regression model. Therefore, we can identify a new goodness-of-
fit index for regression models, as well as a new quantitative criterion for statistical modelling: 
 "The larger conditional entropy H(response | covariates), the better fitted the regression model response 
~covariates". 
Keywords: conditional entropy, kernel estimators, semiparametric logistic regression.  
 
INTRODUCTION 
Linear generalized semiparametric regression 
models become very popular tools for statistical 
modelling, as they emphasize a remarkable 
flexibility and allow application of efficient 
mathematical techniques for data analysis. 
Understanding their deeper properties can be 
extremely useful for all stages, modelling, 
estimation, statistical testing. Therefore, finding the 
informational properties of these regression models 
would be an issue of high interest, both theoretical 
and practical. 
In any regression model, one deals with a random 
vector (response, covariates) and the existence of 
an intrinsic relationship between covariates 
(causes) and response (effect). This relationship is 
essential for modelling and its informational 
dimension could be expressed in terms of a  
 
 
 

 
conditional entropy H (response | covariates): It is 
our task in this paper to define, calculate and 
estimate such entropic measures, and we present 
the results only for one class of models, logistic 
semiparametric regression models with binary 
response (LSpRModelsBR) and with two 
exogenous covariates. 
We discuss two approaches on conditional entropy: 
the Shannon conditional entropy (which is clearly 
defined and well studied) [10] and the α-Renyi 
conditional entropy [11] (for which there is no 
unanimously accepted definition). We substantiate 
our choice for the Jizba & Arimitsu [3] version of the 
α-Renyi conditional entropy. The expressions of 
these two entropic measures are presented for two 
cases, a regression model with discrete covariates 
and another one, with continuous covariates. Also, 
we discuss the issue of nonparametric estimation  
for these conditional entropies. The paper closes 
with a simulation study. 

A. The Shannon and conditional Shannon entropy 
The well known definitions (Shannon, 1948) [10] of these entropic measures are: 
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We mention some of the most important properties, which allow the interpretation of the Shannon entropy as 
a measure of uncertainty associated with the (discrete) probability distributions of the involved random 
variables: 

• Positivity: 
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• AIE (Additional information Increases Entropy), which implies that the entropy of X increases if some 

information is added. 
 

The corresponding definitions for continuous random variables are: 
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B. The α-Renyi entropy  
In 1961, Renyi generalized the Shannon entropy by modifying one of its axioms characterizing the averaging 
of information. Renyi’s entropies keep Shannon additivity property of independent systems. 
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Here are some properties of interest for our work: 
•  RHα is concave and monotonically decreasing in α: 

βαβα ≥∀≤ ,)()( XHXH RR  

• RHα is consistent with Shannon’s entropy: 
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• RHα is consistent with collision entropy: 
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• Additivity of independent systems: 
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The corresponding definition for continuous random variables is: 
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TABLE I.   
DEFINITIONS OF CONDITIONAL RENYI ENTROPY 

 )|(1; YXH R
α

 )|(2; YXH R
α

 )|(3; YXH R
α

 
non-negativity  Yes Yes Yes 

Chain rule No Yes No 

Strong chain rule No Yes Yes 

conditioned AIE Yes Yes Yes 
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C. The conditional Renyi entropy 
There is no commonly accepted definition of conditional Renyi entropy. We present three proposals for this 
entropic measure: 

• the Cachin definition (1997) [2] 
)|()()|(1; yYXHyPYXH R

y
Y

R ==∑ αα , 

• the Jizba & Arimitsu definition (2004) [3], as well as the Golshani, Pasha &Yari definition (2009) [4] 
)(),()|(2; YHYXHYXH RRR

ααα −= , 
• the Renner & Wolf definition (2004) [5] 

)|(min)|(3; yYXHYXH R
y

R == αα . 
Teixeira, Matos & Antunes (2012) [7] compare these three definitions and their findings are presented in the 
following Table I. 
Based on these properties, as well as on the existence of an intrinsic relationship between covariates 
(causes) and response (effect) in a regression model, we adopt the Jizba & Arimitsu definition [3] for the 
conditional α-Renyi entropy, which we simply denote )|( YXH R

α : 

)(),()|( YHYXHYXH RRR
ααα −=   [7] 

As already mentioned, our task in this paper is to define, calculate and estimate these entropic measures for 
one class of models, logistic semiparametric regression models with binary response (LSpRModelsBR) and 
with two exogenous covariates.  
The paper is organized as follows: in Section 2 we calculate the conditional Shannon entropy and the 
conditional α-Renyi entropy for LSpRModelsBR, in Section 3 we construct a nonparametric kernel estimator 
for the introduced quadratic conditional Renyi entropy, and in Section 4 we report the results of a simulation 
study. 
CONDITIONAL ENTROPIES FOR LSPRMODELSBR 
Logistic semiparametric regression models with binary response are defined by the following items: 

• There are two (vector) covariates X = (X1, … , Xr) and U =(U1, … , Ud-r) , which are independent 
(exogenous); 

• The distributions of covariates are either discrete (with probabilities (PX (x) , x) , (PU (u) , u) ), or 
continuous (with densities fX (x) , fU (u) ); 

• The response Y is a binary variable, with a Bernoulli conditional distribution Y | (x, u) ~ B (1, π(x, u)), 
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Function g should be a smooth one, satisfying continuity conditions on g and on its first two derivatives. 
The conditional Shannon entropy associated with this model is 

( )( ) ( ) ( ) ( )( )( )uxUXUX UX ,,|,| , == YHEYH SS  ,   (3) 
Also, the conditional Renyi entropy for this regression model is: 

( )( ) ( ) ( )UXUXUX ,,,,| RRR HYHYH ααα −=  
Its non-negativity, additivity of independent systems and the fact that it satisfies chain rules makes it a very 
good candidate for a measure of the intensity of the connection between the covariates (X, U) and the 
response Y. 
D. The model with d = 2, r = 1 and binary covariates 
Let us denote by M(1) a logistic semiparametric regression model with binary response and with two 
exogenous binary covariates, 
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Proposition 1 
The conditional Shannon entropy associated with M (1) is 
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The conditional Renyi entropy associated with M (1) is 
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Proof: 
The conditional Shannon entropy is given by the expression 
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By direct calculation we obtain the form (5) of this entropy. 
The conditional α-Renyi entropy is given by the expression 
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By direct calculation we obtain the expression (6) for the conditional Renyi entropy associated with M (1). 
 
E. The model with d = 2; r = 1 and Exponential distributed covariates 
Let us denote by M (2) a logistic semiparametric regression model with binary response and with two 
exogenous, Exponential distributed covariates, 
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Proposition 2 
The conditional Shannon entropy associated with M (2) is 

( )( )

( ) ( ) ( ) ( )( ) ( )( )( )dxduux

UXYH

uxuxuxux

S

,,,,
0 0

2121 1log1logexp

,|

ππππλλλλ −−+−−−=

=

∫ ∫
∞ ∞

  (7) 

 
The conditional Renyi entropy associated with M (2) is 
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Proof: 
The conditional Shannon entropy is 
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and, by direct calculation we obtain the expression (7)  
 

The conditional α-Renyi entropy is given by the relation 
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In order to calculate ( )UXYH R ,,α  we need to define a "density" for the vector (Y, X, U), which has a discrete 
component and two continuous components. 
Notice that the following relation is verified: 
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Hence, we can define the "density" of (Y, X, U) by the expression 
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Then, the α-Renyi entropy ( )UXYH R ,,α  is 
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Replacing the expressions (10) and (12) into (9) we get the form (8) of the conditional α-Renyi entropy. 
A KERNEL ESTIMATOR OF THE QUADRATIC CONDITIONAL RENYI ENTROPY 
The estimation of Shannon’s or Renyi’s entropy directly from data would follow the route: data  pdf 
estimation integral estimation. By this strategy, one obtains the "resubstitution" estimate.  
Notice that entropy is a scalar, but as an intermediate step one would have to estimate a function (the pdf). 
Therefore, bypassing the stage of pdf estimation as a function would be very convenient. 
F.  General results 

1)  Kernel estimators for the probability density  
of a random variable have been introduced by Parzen (1962) [12]: 
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where σ is a bandwidth parameter and the kernel function satisfies the conditions 
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Usually, kernels are symmetrical, normalized, unimodal, continuous and differentiable functions. The most 
used function is the Gaussian kernel with standard deviation σ, 
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2)  Kernel estimators for a discrete distribution with integer, positive values  

Kernel estimators for a discrete distribution with integer, positive values have been discussed by Rajagopalan 
& Lall (1995) [8] who have considered weighted linear combinations of relative frequencies in the sample: 
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where K (z) is a kernel function, and jP~   is the relative frequency of j in the sample. 
Wang and Van Ryzin (1981) [9] have proposed the use of a Geometric kernel for nonparametric estimation, 
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Notice that, in this discrete case, estimation of the probabilities is reached by direct calculation, as just a finite 
number of relative frequencies are involved in the formulas. 

3)  Resubstitution kernel estimator of the conditional Shannon entropy 
Resubstitution kernel estimator of the conditional Shannon entropy from a sample    ((y1, x1, u1) , ..., (yN, 

xN, uN)) has the form 
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where ( )( )UXYf ,|
ˆ  is a kernel estimator of the conditional density. More details can be found in Beirlant et al 

(1997) [1]. 
G.  Kernel estimators of the quadratic conditional Renyi entropy 
Xu and Erdogmuns (2010) [6] have introduced an estimator of the quadratic Renyi entropy, bypassing the 
explicit need to estimate the pdf ( )zfZ , as only ( )( )zfE ZZ  is needed, which is a scalar. 
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where ( )⋅σG  is the Gaussian kernel with standard deviation σ. 
The estimation of the quadratic conditional Renyi entropy for LSpRModelsBR reduces to the estimation of the 
quadratic Renyi entropy for the covariates and for the vector (response, covariates), 
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Therefore, we need to extend the Xu and Erdogmuns construction [6] to (bidimensional and tridimensional) 
random vectors. The construction of kernel estimators is performed on the basis of a set of independent 
observations 
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1) Logistic semiparametric regression model with two exogenous discrete covariates. 

For the covariate X, we have the estimator 
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Since X and U are independent, we can use the relation 
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Kernel estimators of conditional probabilities are 
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Proposition 3 
For a logistic semiparametric regression model with two exogenous discrete covariates, the kernel estimator 

( )( )UXYH R ,|ˆ
2  is obtained by replacing relations (14) and (15) into relation (13). 
In our simulation study, we apply this result for the regression model M (1). 
2)  Logistic semiparametric regression model with two exogenous continuous covariates 
Now, let us consider a logistic semiparametric regression model with two exogenous continuous covariates. 
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( )⋅σG  is the Gaussian kernel with standard deviation σ . 

The kernel estimator of ( )UXH R ,ˆ
2 is obtained by direct calculation: 
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On the other hand, we have 
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Proposition 4 
For a logistic semiparametric regression model with two exogenous continuous covariates, the kernel 
estimator ( )UXYH R ,,ˆ

2  is obtained by replacing relations (16), (17) and (18) into relation (13). 
In our simulation study, we apply this result for the regression model M(2) . 
 A SIMULATION STUDY 
In our simulation study, we apply Proposition 3 to the regression model M(1)  and  Proposition 4 to the 
regression model M(2)   
H. Model  M(1) 
Simulation  generates N subsamples of shape (ytk, (xt; ut) , k = 1,…,M) , on which are calculated estimators of 
conditional entropies, by applying in the following way: 

Step 1: generate  X~B(1,τ) 
Step 2: generate  U~B(1,μ) 
Step 3: for each generated pair  from Steps 1 and 2 generate M occurrences of Y as described in Section 

II.A. 
Step 4: Calculate estimators of H(Y,X,U) and H(X,U) 
Step 5: Apply Proposition 3 and calculate kernel estimators for conditional entropies 
 
Table II shows parameters of this simulation. 
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TABLE II. 
SIMULATION PARAMETERS FOR M(1)   

 M N τ μ h 
Rang
e 

10-
1000 

10-
1000 

0-1 
by 
0.2 

0-1 
by 
0.2 

0-1 by 
0.2 

      

 δ β    

Rang
e 

1-5 1-5    

 
Figure1 shows relations between estimator of Conditional Entropy and Kernel estimator of H(Y,X,U) Figure 2 
represents entropies as expressed in Proposition 3. Conditionality can be observed in both graphs. 
Calculated RMSE on simulated data, on different simulations parameters is retrieved in Figure3. 

 

Figure 1.   

Figure 2.   

Figure 3.   
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I. Model  M(2) 
Simulation  generates N subsmples of shape (ytk, (xt; ut) , k = 1,…,M) , on which are calculated estimators of 
conditional entropies, by applying in the following way: 

Step 1: generate  X~Exp(λ1) 
Step 2: generate  U~ Exp(λ2) 
Step 3: for each generated pair  from Steps 1 and 2 generate M occurrences of Y as described in Section 

II.B. 
Step 4: Calculate estimators of H(Y,X,U) and H(X,U) 
Step5: Apply Proposition 4 and calculate kernel estimators for conditional entropies 
 
 
 
Table III shows parameters of this simulation. 

TABLE III. 
SIMULATION PARAMETERS FOR M(2)   

 M N λ1 λ2 σ 
Rang
e 

10-
1000 

10-
1000 

[0,2] 
by 
0.2 

[0,2
] by 
0.2 

1-3 

      

 δ β    

Rang
e 

1-5 1-5    

 
 
 
 
Figure4 shows relations between estimator of Conditional Entropy and Kernel estimator of H(Y,X,U) Figure 

5 represents entropies as expressed in Proposition 4. Conditionality can be observed in both graphs. 
Figure 6 shows that: the larger is Conditional Entropy the lower is RMSE. 

 

Figure 4.   
 

Figure 5.   
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Figure 6.  
Figure 7.   

 
CONCLUSIONS 
We define and study two conditional entropies H (response | covariates) for regression models and 
materialize them for logistic semiparametric regression models with binary response (LSpRModelsBR). 
Based on its properties and on our simulation results, we conclude that a conditional entropy quantifies the 
intensity of the connection "response ~covariates" within a regression model. Therefore, we can identify a new 
goodness-of-fit index for regression models, as well as a new quantitative criterion for statistical modelling: 
"The larger conditional entropy H (response | covariates), the better fitted the regression model response 
~covariates". 
BIBLIOGRAPHY: 
[1] Beirlant, J., Dudewicz , E.J., Gyor., L., Van der Meulen, E.C. (1997), Nonparametric Entropy Estimation. 

An overview, International Journal of Mathematical and Statistical Sciences, 6(1) 
[2] Cachin, C. (1997), Entropy measures and unconditional security in cryptography, Ph.D. dissertation, 

Dept. Comput. Inf. Sci., Swiss Federal Inst. Technol., Zürich, Switzerland 
[3] Jizba P., Arimitsu, T.(2004), The world according to Rényi: Thermodynamics of multifractal systems, 

Ann. Phys., 312, 17-59 
[4] Golshani, L., Pasha, E., Yari, G. (2009), Some properties of Rényi entropy and Rényi entropy rate, Inf. 

Sci., 179, 2426.2433 
[5] Renner, R., Wolf, S., (Roy, B. Ed.), (2005), Simple and tight bounds for information reconciliation and 

privacy amplification, Proc. 11th Int.Conf. Theory Appl. Cryptol. Inf. Security - ASIACRYPT, 199 - 216. 
 
[6] Xu, D., Erdogmuns, D. (2010), Renyi’s entropy, divergence and their nonparametric estimators, 

published by Principe, J.C. (Ed), Information Theoretic Learning  
[7] Teixeira, A., Matos, A., Antunes, L. (2012), Conditional Rényi Entropies. IEEE Transactions on 

Information Theory, 58(7), 4273 – 4277 
[8] Rajagopalan, B., Lall, U. (1995), A kernel estimator for discrete distributions, Nonparametric Statistics, 4, 

409 - 426 
[9] Wang, M.C., Van Ryzin, J. (1981), A class of smooth estimators for discrete distributions, Biometrika, 68 

(1), 301 - 309 
[10] Shannon C.E. (1948), A mathematical theory of communication, Bell Syst. Techn. Journal, 27, 379-423, 

623-656 
[11] Renyi, A. (1961), On measures of information and entropy. Proc. of the 4th Berkeley Symposium on 

Mathematics, Statistics and Probability, 547 – 561 
[12] Parzen, E. (1962). On Estimation of a Probability Density Function and Mode, The Annals of 

Mathematical Statistics 33 (3) 
 
 

 
 

362 
 


	Introduction
	The Shannon and conditional Shannon entropy
	The α-Renyi entropy
	The conditional Renyi entropy

	Conditional Entropies For LSpRModelsBR
	The model with d = 2, r = 1 and binary covariates
	Proposition 1

	The model with d = 2; r = 1 and Exponential distributed covariates
	Proposition 2


	A KERNEL ESTIMATOR OF THE QUADRATIC CONDITIONAL RENYI ENTROPY
	General results
	Kernel estimators for the probability density
	Kernel estimators for a discrete distribution with integer, positive values
	Resubstitution kernel estimator of the conditional Shannon entropy

	Kernel estimators of the quadratic conditional Renyi entropy
	Logistic semiparametric regression model with two exogenous discrete covariates.
	Proposition 3

	Logistic semiparametric regression model with two exogenous continuous covariates
	Proposition 4



	A SIMULATION STUDY
	Model  M(1)
	Model  M(2)
	CONCLUSIONS
	BIBLIOGRAPHY:



