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Abstract: The paper presents an application of the divide and conquers strategy to exactly solve the 
Discrete Berth Allocation Problem (DBAP). After partitioning a problem by divide and conquer strategy to 
sub-problems Sedimentation Algorithm solver is used to exactly solve these sub-problems. Experimental 
evaluation we performed completely justifies application of the proposed divide and conquer strategy for 
exactly solving DBAP. Computational results on two classes of DBAP and discussion of the most difficult 
problems entirely demonstrate the superiority of the divide and conquer strategy over the approach to solve 
DBAP without it. Its application considerably reduces average and maximal runtimes for all test instances. 
Efficient C implementation enabled us to solve instances of DBAP with up to 120 vessels, which is more than 
enough for big ports. 
Keywords: Combinatorial optimization, Scheduling problems, Cost minimization, exact algorithms, optimal 
solution. 
 
INTRODUCTION 
The Berth Allocation Problem (BAP) consists of 
allocating berths to a set of vessels that need to be 
served within a given time horizon in a container 
port. Vessels are, among other information, 
represented by a set of data that includes the 
expected time of arrival, size, projected handling 
time, preferred berth in the port, and penalties. BAP 
can be defined as follows: for each vessel in the set, 
the berth index and the time interval are allocated in 
the manner that the given objective function is 
minimized. In [1], BAP was proven to be a NP-hard 
problem.  
BAPs can be classified as discrete, continuous or 
hybrid. In discrete BAP (DBAP) quay is partitioned 
into a number of sections, called berths, and each 
berth can serve one vessel at a time. Time is also 
partitioned into discrete units, which allows the use 
of integer arithmetic for the calculation of the 
objective function value. Another possible 
classification distinguishes static and dynamic 
BAPs. In the static BAP, it is assumed that all 
vessels arrive at the container terminal in advance, 
namely before any berth becomes available. If the 
vessels can arrive at any time during the planning 
horizon (although we still have an a priori knowledge 
of their arrivals), then BAP is dynamic. A detailed 
BAP classification can be found in [2]. 
In recent literature, exact approaches addressing 
BAP are rare because they can solve problems with 
small number of vessels. Therefore, the majority of 
studies use heuristic or meta-heuristic methods to 
obtain suboptimal solutions of BAP. According to the 
recent survey of BAP by [3] exact methods are 
applied in 24% of approaches, while the rest of 76% 

approaches belongs to the heuristic and meta-
heuristic methods.  
An exact method for solving BAP can be found in 
[4]. The authors proposed an exact algorithm for 
solving the Tactical Berth Allocation Problem 
(TBAP) defined by [5]. The model for TBAP is based 
on an exponential number of variables, and it is 
solved via column generation. To obtain an integer 
solution, a branch-and-price scheme was applied 
along with several accelerating techniques 
specifically designed for solving TBAP. 
Divide and conquer strategy is also rarely used for 
solving BAP. In this paper we present one general 
algorithm for solving BAP based on divide and 
conquer strategy. This algorithm needs a 
standalone procedure for solving BAP to be 
complete. We used BAP solver based on 
Sedimentation Algorithm with Estimate and 
Rearrange Heuristic (SA+ERH) develop in [6].  
Numerical experiments are conducted only for 
DBAP. Other cases of BAP: hybrid and continuous 
are omitted because they would extend this paper 
beyond the predefined limit.  Two sets of test 
examples involve 5 berths with one week planning 
horizon and 8 berths with two week planning 
horizon. We compare SA+ERH with or without 
divide and conquer strategy. Our computational 
results clearly prove the superiority of the proposed 
divide and conquer strategy. Model for BAP in this 
paper is based on Rashidi and Tsang model in [7]. 
The rest of this paper is organized as follows. First, 
we introduce our notation and explain the problem 
formulation in Section II. In Section III, divide and 
conquer strategy is described. Computational 
results are presented in Section IV. Finally, Section 
V contains concluding remarks and directions for 
future research. 
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PROBLEM FORMULATION 
The process of assigning vessels to berths is very 
complex; it consists of several problems, such as 
the Berth Planning Problem, Berth Allocation 
Problem, Quay Crane Assignment Problem, and the 
Quay Crane Scheduling Problem. 
In this work, we concentrate on minimum-cost BAP. 
The model for this problem is a sub-model of the 
model in [7]. We use only the part of that model that 
is referring to the berth allocation and reproduce it in 
the rest of this section. We omit the part of the 
model related to the crane assignment, assuming 
that each berth is equipped with exactly one crane. 
A. Assumptions 
We made the following assumptions about berthing 
of vessel in container port: 
Assumption 1. Each vessel has a pre-determined 
berthing time period. A cost penalty applies if the 
vessel berths early, tardy or departs late. 
Assumption 2. Each vessel has a preferred 
berthing location. Preferred location of the vessel 
depends on some preference like: location of the 

storage area where inbound/outbound containers of 
the vessel are stacked, depth of water, strength and 
direction of currents or some other preference. 
Assumption 3. At each time period only one 
container can be loaded/unloaded on a berth. 
Moreover, we assume that at each berth there is 
exactly one crane available for loading/unloading of 
the vessel.  
The Assumption 3 is necessary to establish 
compatibility with the model for BAP in [7], since 
here we will deal only with the BAP without crane 
assignment. 
B. Input Variables 
Our model and algorithms use the input data listed 
below:  
T: The total number of time periods in the 
planning horizon.  
m:  The number of berths in the port. 
l:  The number of vessels in the planning 
horizon. 
vessel: The sequence of data relevant for vessels, 
which has the following structure: 

 
( ){ }lkCCCCsdbaETAvessel kkkkkkkkk ,,1|,,,,,,,, 4321 ==  

The elements of a vessel 9-tuple represent the following data for each vessel: 
ETAk: The expected time of arrival of a vesselk. 
ak: The processing time of the vesselk. 
bk: The length of the vesselk. 
dk: The required departure time for the vesselk. 
sk: The least-cost berthing location of the vesselk. 
C1k: The penalty cost for the vesselk if the vessel cannot dock at its preferred berth. 
C2k: The penalty cost for the vesselk per unit time for arrival before ETAk. 
C3k: The penalty cost for the vesselk per unit time for arrival after ETAk. 
C4k: The penalty cost for the vesselk per unit time of delayed departure after dk. 
Since, in DBAP only one berth is allocated to a vessel, then the value of the bk parameters must be 1, for all 
vessels.  
Set of all vessels indices we will denote by { }.,...,1 lL =  
C. Decision Variables and Domains 
The formulation of BAP given in [7] uses following decision variables: 
Atk: The arrival time of a vesselk to the corresponding berth, { }TAtk ,...,1∈ . 
Dtk: The departing time of the vesselk from the corresponding berth, { }TDtk ,...,1∈ . 
Bik: The lowest berth index allocated to the vesselk from the corresponding berth, { }mBik ,...,1∈ . 
Xitk: If berth i at the time t is allocated to the vesselk, Xitk takes the value 1; otherwise, its value is 0. 
Obviously, { }1,0∈itkX . 
D. Constrains 
A feasible solution of BAP is subject to two sets of constraints. 
Constraints1. At a time t, each berth can be assigned to only one vessel: 

{ }( ) { }( )∑
=
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l
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Constraints2. A berth is allocated to the vessel only between its arrival and departure times: 
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E. Objective Function 
Let us first introduce the auxiliary variable Zk, which represents the sum of the absolute distances between 
the preferred location of the vesselk and the berths allocated to the vesselk: 

∑∑
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The objective function for the minimization of the port penalty cost can be formulated as follows: 
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The objective function minimizes the cost of vessels waiting time, speed up time, tardiness and berth 
position. According to [2] and the above problem formulation, our BAP can be classified as: 

stat | fix | Σ(w1 wait + w2 speed + w3 tard + w4 pos). 
The above model coves all three cases of BAP: discrete, continuous and hybrid. 
 
DIVIDE AND CONQUER STRATEGY FOR SOLVING OF THE 
BERTH ALLOCATION PROBLEM  
D&C strategy for solving BAP divides the set of 
input vessels into the subsets (sub-problems) and 
solves these sub-problems by a BAP solver. 
Solutions of the sub-problems are compared and 
then, if necessary, some of the subsets (sub-
problems) are united and solved again. This 
procedure is repeated until there is no reason to 
unite subsets (sub-problems). 
In this paper we selected BAP solver based on the 
Sedimantation Algorithm with Estimate and 
Rearrange Heuristic (SA+ERH) introduced in [6]. 
D&C strategy is independent of BAP solver, so any 
other BAP solver can be applied with it. 
In this chapter we will introduce all the necessary 
prerequisites for the formulation of D&C algorithm 
and then algorithm for D&C algorithm will be 
exposed. 
F. Input and Output of the D&C Algorithm 
Input variables for D&C algorithm are the input 
variables of the BAP introduced in the previous 
section. Output of D&C algorithm will be the minimal 
(optimal) solution of the considered BAP, if it exists, 
and the value of the corresponding objective 
function. Solution of BAP is given in the form of the 
function: 
 ( ) { } { }{ }.,...,1,,...,1,|,,,: mdbbTdttdbdtbtLs ∈∧∈→  (5) 
In the ordered 4-tuple (t,b,dt,db), t represents the 
arrival time of the vessel, b represents the lowest 
berth index allocated to the vessel, dt is the duration 
of vessel handling on the berths and db is the 
number of berths occupied by the vessel. 
If function s is given and ),,,,()( dbdtbtks = for ,Lk∈  
then decision variables for the vesselk can be 
calculated in the following way Atk = t and Bik = b. 
Decision variables Dtk and Xitk can be trivially 
calculated once when Atk and Bik are known. 
Therefore, it is sufficient only to determine the 
function s. Minimal value of the objective function 
we denote as minimum. 
Definition1. Function of the form:  

 ( ) { } { }{ },,...,1,,...,1,|,,,: mdbbTdttdbdtbtLs ∈∧∈→  (6) 
is called valuation. Valuations that satisfy Constrain 
1. and Constrain 2. are called feasible solutions, or 
shorter solutions. A 4-tuple (t,b,dt,db) is called 
vessel position. 
Definition2. An algorithm Alg and its input variables 
InVar and output variables OutVar is denoted as: 
OutVar := Alg(InVar). 
If we label proposed divide and conquer strategy as 
D&C algorithm, then according to Definition 2. we 
write: 
(s,minimum) := D&C(T,m,l,vessel).  (7) 
If the input problem does not have solution we 
assume that return variable minimum takes value 

.+∞  
G. BAP solver 
BAP solver is sub procedure of the D&C algorithm. 
Therefore, the input variable for BAP solver is ω, a 
subset of the vessels indices: L⊆ω . Similarly, as in 
the case of D&C algorithm, output is the optimal 
solution of the BAP for the subset ω, in the form of 
the function: 

( ) { } { }{ }.,...,1,,...,1,|,,,: mdbbTdttdbdtbts ∈∧∈→ωω  (8) 
Also, the value of the objective function for the 
solution sω, denoted by minimumω, is output value 
as well.  According to the Definition 2. if we label 
BAP solver as BAPSolver algorithm, we can sum 
the above as: 
(sω, minimumω) := BAPSolver(ω).  (9) 
If the input problem does not have a solution we 
assume that return variable minimum takes value 

.+∞  
As previously mentioned, Sedimentation Algorithm 
with Estimate and Rearrange Heuristic (SA+ERH) 
based solver was used as BAP solver. SA+ERH is 
halting algorithm and it always returns one optimal 
solution of the input problem. The proof of the total 
correctness of SA+ERH is given in [8]. In the 
COMPUTATION RESULT section comparison between 
SA+ERH and D&C is given for the case of discrete 
BAP (DBAP). 
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H. Conflicting relation 
Berths and time units can be represented in a 2 
dimensional discrete coordinate system. Horizontal 
axis represents time units, while vertical represents 
berths. Because of the Constrain 1 and Constrain 

2, vessels are rectangles that must fit in the 
Berth×Time plane. 
Definition3. The relation ρ between the vessels with 
positions (tv1,bv1,dt1,db1) and (tv1,bv1,dt1,db1) is 
defined as follows: 

( ) ( ) ⇔22221111 ,,,,,, dbdtbtdbdtbt vvvv ρ  
∨≤+∨≤+ 122211 vvvv tdtttdtt .122211 vvvv bdbbbdbb ≤+∨≤+        (10) 

If the two vessels are in relation ρ we call them non-
conflicting vessels, otherwise we call them 
conflicting vessels. Confliction relation we will 
denote as ρ . 
Obviously, relations ρ  and ρ  are symmetrical, 
while only relation ρ   is reflexive. In general case 
neither of them is transitive. 
Proposition1. Valuation s is a feasible solution if 
and only if: 
     ( ) ).()(, jsisjiLji ρ⇒≠∈∀               (11) 
The proof of the proposition is trivial so we omit it. In 
the rest of the paper we will use Proposition 1. very 
often. Stating that some valuation s is non-
conflicting we will assume that condition (11) holds 
and that s represent a feasible solution of the input 
BAP. It is obvious from Definition 4. that vessels 
are non-conflicting if their rectangles in Berth×Time 
plane do not overlap. If their rectangles in 
Berth×Time plane do overlap, then they are 
conflicting. 
Definition5. For a given valuation s, two disjoint 
subsets L⊂21,ωω  are in relation sρ  (called non-
conflicting) if and only if ),()( jsis ρ  for each 1ω∈i  
and .2ω∈j Definition of non-conflicting subsets can 
be written as: 

( )( ) ).()(2121 jsisjis ρωωωρω ∈∀∈∀⇔            
(12) 
Definition6. For the given valuation s, two disjoint 
subsets L⊂21,ωω  are in relation sρ  (called 
conflicting) if and only if there are 1ω∈i  and 

,2ω∈j such that ).()( jsis ρ  Definition of conflicting 
subsets can be written as: 

( )( ) ).()(2121 jsisjis ρωωωρω ∈∃∈∃⇔             
(13) 
Definition7. For a binary relation ,2L⊆σ  we 
denote its reflexive transitive symmetric closure by 

.≡σ  Relation ≡σ is equivalence relation. 
Definition8. For an equivalence relation ,2L⊆σ  
and element ,Lj∈  we denote its class of 
equivalence by [ ] { }.| ijLij σσ ∈=  

Definition9. For an equivalence relation ,2L⊆σ  we 
denote its set of all equivalence classes by ./σL  
I. D&C Algorithm 
Before describing in detail D&C algorithm let us first 
introduce following definition. 
Definition10. Let s0 denotes a valuation which 
assigns the least cost position to each vessel. In 
some cases function is not unique. In such cases 
we take any function with the feature of assigning 
the least cost position to a vessel. 
We assume that function CalculateObjFun(s), which 
calculates value of the objective function for the 
valuation s is available. 

As it is already mentioned, input variables 
for D&C are input variables of BAP. First, in the step 
2, we set initial value of the valuation s to be s0. 
Valuation s0 doesn’t represent feasible solution, so 
we define relation ≈, as the reflexive transitive 
symmetric closure of the conflicting vessels in the 
valuation s, i.e. s0. Obviously relation ≈ is 
equivalence relation.  
In the step 3, we define two sets: U and S. Set U 
contains unsolved sub-problems and set S consists 
of all solved sub-problems. Initial value of the set U 
is the set of all equivalent classes of the relation ≈. 
Elements of the sets U are disjoint subsets of the 
set of vessels indices L which represent sub-
problems. Each two vessels which are elements of 
the same class of equivalence of the relation ≈ can 
be possibly conflicting. Vessels that are not in the 
same class of equivalence of the realtion ≈, are less 
likely to be conflicting.  
Main idea of the D&C algorithm is to solve BAP 
separately for each sub-problem ω in the set U. If 
the solution of the sub-problem ω is not conflicting 
with the other sub-problems in sets U and S, then 
the member ω is moved to the set S.  If the solution 
is conflicting, then all conflicting members of the 
sets U and S with ω are united, removed from the 
sets U and S and finally BAP for the union is solved. 
The described procedure is repeated until set U is 
nonempty. Therefore initial value of the set S is the 
empty set, while the final value for set U is the 
empty set. 
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TABLE 1 

D&C ALGORITHM 
1: function D&C(T,m,l,vessel) 
2:      0ss = ;  ≡=≈ sρ  

3:      ≈= /LU ;  { }=S  

4:      until { }≠U  do 

5:              U∈ω   
6:               (sω, minimumω) := BAPSolver(ω) 
7:               if  +∞=ωminimum then return { }( )+∞,  

8:              ωω sss L ∪= \| ;  ≡=≈ sρ  

9:              { }ϕωϕ ≈∪∈=Ω |SU  

10:               if  { }ω=Ω  then 

11:                     { }ω∪= SS ;  { }ω\UU =  
12:               else 
13:                     Ω= \SS ;   
14:                     Ω= \UU ;   { }Ω∪= UU  
15:               endif 
16:      enduntil 
17:      return ( )( )sbjFunCalculateOs,   
18: endfunction 

 
In the step 4, we enter the loop until set U is non 
empty. In loop we first select any element ω of the 
set U in the step 5. In the step 6 we solve BAP for 
the sub-problem ω and save the valuation and the 
value of the optimal solution into varibles sω and 
minimumω. If +∞=ωminimum  then sub-problem ω 
does not have feasible solution. This means that the 
initial set of vessels L also does not have a solution, 
so in the step 7 we return empty set indicating that 
the initial problem does not have a feasible solution. 
If the sub-problem ω does have a solution, then, in 
the step 8, we update valuation s with the solutions 
of the sub-problem sω by keeping the same 
positions for the vessels not in ω, and replacing the 
old positions for the vessels in ω. Also in the step 8 
we update relation ≈ so that it is defined as a 
reflexive transitive symmetric closure of the 
conflicting vessels in the updated valuation s. 
In the step 9 we define set Ω as the set of all 
conflicting subsets from sets U and S with sub-
problem ω  in the valuation s. Set Ω is nonempty 
set, at least it contains only sub-problem ω. If that is 
the case, then solution of the sub-problem ω is not 
in conflict with the solutions of the solved sub-
problems in S as well as the least costing positions 
of vessels of the unsolved sub-problems in U. So, it 
is safe to add ω to the set of solved sub-problems S 
and to remove it from the set of the unsolved sub-
problems U, in the steps 10 and 11. 
If Ω contains more sub-problems than ω, then sub-
problems are removed from both U and S. We unite 
all vessels in the set of sub-problem Ω which are in 
conflict with ω into a new sub-problem Ω . New 
sub-problem Ω  has to be solved, and therefore, it 

is added to the set U. Description in this paragraph 
covers the steps 10, 13 and 14. 
When the set U is empty all the sub-problems are 
solved and they are mutually non-conflicting. A that 
point, function s contains valuation which is the 
optimal solution of the initial problem. Therefore 
function ends with the return of the valuation s and 
the value of the optimal solution calculated by the 
predefined function CalculateObjFun(s) in the step 
17. 
Proposition1. D&C algorithm is halting.  
Proof: Halting problem for D&C algorithm, 
described in the TABLE 1, is equivalent to the 
question does the until loop in steps 4. to 16. stops. 
The condition for the until loop is non emptiness of 
the set U. Notice also that cardinality of the set S is 
at most equal to the number of the loop executions.  
If the { }ω=Ω  then then cardinality of the set U is 
reduced, so in that case infinite loop will not occur. 
On the other hand, if ,1>Ω then beside ω set Ω 
contains at least one more member .Ω∈ϕ  Member 
φ can be either from set U or set S, according to the 
rules for calculating set Ω (step 9). 
If U∈ϕ  then in the step 14. cardinality of the set U 
is decreased at least by 2 and then increased by 1. 
All in all the cardinality of the set U is decreased at 
least by 1, so in that case infinite loop will not occur. 
Finally, if S∈ϕ cardinality of the set S is decreased 
in the step 13, then, in the worst case, the 
cardinality of the set U remains the same in the step 
14. It appears that this case can introduce possibility 
of the infinite loop. 
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But this case can be iterated only while the set S is 
non empty. Since S is always finite set, this case 
can occur only as much times as it is cardinality of 
the set S, i.e. a finite number of times. After that, 
some of the cases in which cardinality of the set U is 
reduced will occur, thus preventing the infinite loop. 
Q.E.D. 
Proposition2. Solution obtained by D&C algorithm 
is a feasible solution. 
Proof: After halting of the D&C algorithm finite set S 
contains non conflicting sets of sub-problems 
exactly solved by the BAPSolver function. 
Therefore, valuation s is non-conflicting and by 
Proposition 1. it is also a feasible solution of the 
input BAP. Q.E.D. 
Proposition3. Solution obtained by D&C algorithm 
is an exact (optimal) solution. 
Proof: Let us denote by ms the value of the 
objective function for the valuation s. Also, let us 
denote the members of the set }.,...,,{ 21 kS ωωω=  
From the description of D&C algorithm it is clear that 
set S is a partition of the set L. Let ms(i) represents 
values of the objective function for the },...1{, kii ∈ω  
in the valuation s.  
Let valuation t be any feasible solution of the input 
BAP. First let us denote by mt the value of the 
objective function for the valuation t and by mt(i) 
values of the objective function for the },...1{, kii ∈ω  
in the valuation t.  
Since ms(i) are the values of the objective function 
for optimal solutions of sub-problems },...1{, kii ∈ω  
following holds: 
        { }( ) ).()(,...,1 imimki ts ≤∈∀                  (14) 
From (14) we easily derive that: 

     .)()(
11
∑∑
==

=≤=
k

i
tt

k

i
ss mimimm               (15) 

So, for any feasible solution t its objective function 
value is greater than or equal to the objective 
function value of the feasible solution s, i.e. .ts mm ≤  
Therefore, valuation s is one of the optimal solutions 
of the considered BAP. Q.E.D. 
Note, that optimal solution of BAP does not have to 
be unique. Previous propositions proof the total 
correctness of the D&C algorithm for solving BAP.  
COMPUTATIONAL RESULTS 
In this section, we present the test instances and 
computational results of D&C algorithm and 
SA+ERH. Finally, we analyze few long running time 
examples in order to find answer what makes them 
hard for solving with D&C algorithm. 
J. Test Instances 
The experimental evaluation is performed on two 
classes of DBAP instances that are similar to those 
introduced in [5]. We consider test instances with 5 
and 8 berths and time horizons of 1 or 2 weeks. The 
time horizon is divided into 3-hour time units. Thus, 
one week has 56 time units and two weeks are 
divided into 112 time units. The number of vessels 
ranges from 5 to 120, with an increment of 5 
vessels, and it is specific for each test class we 
consider. 
The classes of test instances are the following: 
Class I: 5 berths, 1 week, and 5 to 45 vessels. 
Class II: 8 berths, 2 weeks, and 5 to 120 vessels. 
The information required to specify various types of 
vessels are presented in Table 2. The specifications 
resemble those used by [2]; however, here they are 
adjusted to DBAP. Three types of vessels are 
present in the test population: feeder, medium and 
mega. For each type, the corresponding percentage 
of the test population, handling time range, penalty 
amounts (in units of US$ 1000) are listed in TABLE 2. 
Let us note again that in DBAP each vessel 
occupies only one berth. 

 
TABLE 2. 

TEST VESSELS SPECIFICATIONS 
Size, handling times & penalties for test vessels 

Vessel 
type 

Percentage 
 of the test  
population 

Handling  
time range C1 C2 C3 C4 

Feeder 60% 1 – 3 2 3 3 9 
Medium 30% 4 – 5 3 6 6 18 
Mega 10% 6 – 8 4 9 9 27 
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The distribution of the least-cost berthing location for 
vessels is homogeneous. For each instance and the 
number of vessels, 500 tests were randomly 
generated. We recorded the percentage of the tests 
that were solved in a half-an-hour period, i.e., 1800 
seconds.  For all the tests that were solved in a half-
an-hour period, we also recorded the minimum, 
average and maximum time required to find the 
solution. 
Tests that were not solved in a half-an-hour period 
were interrupted and they are not included into the 

calculation of the minimal, average and maximal 
time for finding solution. All the times in the following 
tables are expressed in seconds. 
K. Camparison Between D&C & SA+ERH 
D&C algorithm and SA+ERH were coded in the C 
programming language. Code was compiled by 
Microsoft C/C++ Optimizing Compiler version 
18.00.31101 for x86. The tests were conducted on a 
computer with an Intel Core i7-4500U @ 1.80GHz—
2.40GHz CPU and 8 GB of RAM running the 
Microsoft Windows 8.1 64-bit operating system. 

 
TABLE 3. 

RUNTIMES FOR THE CLASS I EXAMPLES 

l 

Class I: 5×56 | 500 samples | DBAP 
SA+ERH D&C Algorithm 

t ≤  
½h  
% 

mi
n 

av
g 

max t ≤  
½h  
% 

mi
n 

av
g 

max 

5 100
.0 

0.
00 

0.0
2 

0.06 100
.0 

0.
00 

0.0
2 

0.05 

1
0 

100
.0 

0.
02 

0.0
2 

0.05 100
.0 

0.
01 

0.0
4 

0.08 

1
5 

100
.0 

0.
02 

0.0
3 

0.16 100
.0 

0.
02 

0.0
6 

0.19 

2
0 

100
.0 

0.
02 

0.0
6 

0.22 100
.0 

0.
02 

0.0
8 

0.14 

2
5 

100
.0 

0.
02 

0.1
5 

7.41 100
.0 

0.
03 

0.1
3 

1.46 

3
0 

100
.0 

0.
03 

1.3
3 

80.4
4 

100
.0 

0.
08 

0.3
9 

11.2
6 

3
5 

96.
6 

0.
05 

17.
31 

1399
.49 

100
.0 

0.
09 

1.6
8 

210.
37 

4
0 

− − − − 100
.0 

0.
11 

6.9
4 

1325
.05 

4
5 

− − − − 99.
2 

0.
16 

16.
60 

1077
.15 

 

 

 
Figure 1.      Distribution of runtimes for D&C and its cumulative graph of Class I for 40 vessels 
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TABLE3. shows the computational results for the 
Class I test instances of DBAP. In the cases with 5 
to 25 vessels, both algorithms expectedly perform 
very well. In the case of 25 vessels average 
runtimes of D&C and SA+ERH are still almost 
equal, while maximal runtime of D&C algorithm is 
much smaller than the runtime for the SA+ERH, 
1.46 seconds compared with 7.41. In the case of 30 
vessels both algorithms solve all 500 examples in a 
half-an-hour period. In that case D&C algorithm 
average runtime is 3.41 times faster than SA+ERH, 
while maximal runtime is 7.14 times faster. In the 
case of 35 vessels SA+ERH cannot solve all 500 
examples in a half-a-hour time period, whereas D&C 
algorithm solve all 500 examples not only for the 
cases of 35, but also for the cases of 40 vessels. It 
is evident that for the cases of 35 vessels and more 
maximal runtimes of D&C algorithm are significantly 
reduced compared to SA+ERH. The results of the 

SA+ERH execution for the cases with the number of 
vessel larger than or equal to 40 are not presented 
in TABLE 2 because the time needed for solving 500 
examples was too long. Note that the average 
runtime of D&C algorithm for 45 vessels is still lower 
than the average runtime of SA+ERH for 25 
vessels. Also, the percent of problems solved in a 
half-an-hour period by D&C algorithm for 45 vessels 
(99.2%) is larger compared with SA+ERH for 35 
vessels (96.6%). 
From the TABLE 3 we conclude that D&C algorithm 
is capable to solve all examples with 40 vessels in a 
half-an-hour period, while SA+ERH can solve all 
examples in a half-an-hour period with at most 30 
vesels. Also it significantly reduces maximal runtime 
for any number of vessels.  
Distribution of D&C algorithm runtimes for the case 
of 40 vessels and its cumulative function are given 
in the Figure 1.  

 

On the horizontal axis time interval limits in 
logarithmic scale are given. On the vertical axis for 
distribution graph number of solved examples is 
represented, while for the cumulative graph 
percentage of the solved problems is represented. 
For the cumulative graph we can read that 99% of 
the problems were solved in less than 28.21 
seconds and only 1% needed more than 28.21 
seconds to be solved.  

Number of unsolved examples for the case of 45 
vessels is relatively small, 3 out of 500, which is 
0.4%. These are examples numbered by: 100, 268 
and 444, which we call hard examples for the case 
with 45 vessels. Given the unlimited time for solving 
hard examples by D&C algorithm, the corresponding 
runtimes are presented in TABLE 4. 

 
TABLE 4. 

CLASS I HARD CASES FOR 45 VESSELS 

No 
Class I: 5×56 | 500 samples | DBAP 

D&C 
h:m:s 

Maximal length  
sub problem 

100 0:20:49 31 
268 4:48:20 33 
444 More than 

12:00:00 
33 

 
 

 
Figure 2.      Distribution of runtimes for D&C and its cumulative graph of Class II for 100 vessels 
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Examples 268 and 444 are hard to solve by D&C 
algorithm in the half-an-hour time-period because of 
the large sub problems with 33 and more vessels. 
On the other hand D&C algorithm's failure to solve 
example 100 in a half-an-hour period is due to the 
bad estimations of the sub problems optimal 
solutions, which plays an important role in the 
efficiency of the BAPSolver(ω) procedure. In the 
second run example 100 was solved within the time 
limit of half-an-hour thanks to the much batter 
estimations during the work of the BAPSolver(ω) 
procedure. 
TABLE 5. shows the computational results for the 
Class II test instances of DBAP. Superiority of the 

D&C algorithm over SA+ERH is evident in every 
aspect. Average runtimes and maximal runtimes are 
significantly reduced. In the case of 60 vessels 
average runtime of D&C algorithm is 23.25 times 
faster compared to SA+ERH.  Also, D&C algorithm 
is capable to solve all examples with 100 vessels in 
a half-an-hour period, while SA+ERH can solve all 
examples in a half-an-hour period with at most 60 
vessels. The percentage of examples not solved in 
a half-an-hour period for 105 to 115 vessels is 
relatively small from 0.4% or 0.8% (2 or 4 out of 500 
examples). For 120 vessels it is 2.6%, which is still 
good result considering the number of vessels. 

TABLE 5. 
RUNTIMES FOR THE CLASS I EXAMPLES 

l 

Class I: 8×112 | 500 samples | DBAP 
SA+ERH D&C Algorithm 

t ≤ 
½h 
% 

min avg max t ≤ 
½h 
% 

min avg max 

5 100.0 0.00 0.02 0.03 100.0 0.00 0.02 0.05 
10 100.0 0.01 0.02 0.05 100.0 0.02 0.02 0.06 
15 100.0 0.02 0.03 0.09 100.0 0.00 0.01 0.08 
20 100.0 0.02 0.04 0.49 100.0 0.00 0.01 0.03 
25 100.0 0.03 0.07 0.77 100.0 0.00 0.01 0.02 
30 100.0 0.03 0.13 0.84 100.0 0.00 0.02 0.11 
35 100.0 0.03 0.30 1.47 100.0 0.00 0.02 0.16 
40 100.0 0.05 0.61 1.88 100.0 0.01 0.03 0.38 
45 100.0 0.05 0.90 2.27 100.0 0.02 0.04 0.36 
50 100.0 0.05 1.52 22.10 100.0 0.02 0.08 0.66 
55 100.0 0.07 4.45 385.47 100.0 0.02 0.16 0.95 
60 100.0 0.24 6.51 780.00 100.0 0.03 0.28 1.23 
65 99.4 0.41 41.82 1753.07 100.0 0.03 0.49 1.38 
70 − − − − 100.0 0.03 0.70 3.88 
75 − − − − 100.0 0.05 1.01 22.74 
80 − − − − 100.0 0.05 1.25 12.09 
85 − − − − 100.0 0.06 1.86 26.05 
90 − − − − 100.0 0.58 2.43 19.27 
95 − − − − 100.0 1.23 3.56 38.16 

100 − − − − 100.0 1.81 9.08 984.72 
105 − − − − 99.6 1.91 10.04 1153.83 
110 − − − − 99.2 2.13 11.91 1199.67 
115 − − − − 99.2 2.41 20.05 1126.23 
120 − − − − 97.4 2.61 25.30 1566.79 

 
TABLE 5. shows the computational results for the 
Class II test instances of DBAP. Superiority of the 
D&C algorithm over SA+ERH is evident in every 
aspect. Average runtimes and maximal runtimes are 
significantly reduced. In the case of 60 vessels 
average runtime of D&C algorithm is 23.25 times 
faster compared to SA+ERH.  Also, D&C algorithm 
is capable to solve all examples with 100 vessels in 
a half-an-hour period, while SA+ERH can solve all 
examples in a half-an-hour period with at most 60 
vessels. The percentage of examples not solved in 
a half-an-hour period for 105 to 115 vessels is 
relatively small from 0.4% or 0.8% (2 or 4 out of 500 
examples). For 120 vessels it is 2.6%, which is still 
good result considering the number of vessels. 

Distribution of D&C algorithm runtimes for the case 
of 100 vessels and its cumulative function are given 
in the Figure 2. For the cumulative graph we can 
read that 98.4% of the problems were solved in less 
than 29.90 seconds and only 1.6% needed more 
than 29.90 seconds to be solved. 
Number of unsolved examples for the case of 105 
vessels is relatively low, 2 out of 500, which is, as 
mentioned, 0.2%. These are examples numbered 
by: 299 and 377, which we call hard examples for 
105 vessels. Given the unlimited time for solving 
hard examples by D&C algorithm, the corresponding 
runtimes are given in TABLE 6. 
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TABLE 6. 

CLASS II HARD CASES FOR 105 VESSELS 

No 

Class II: 8×112 | 500 samples | 
DBAP 

D&C 
h:m:s 

Maximal length  
sub problem 

299 4:22:32 38 
377 0:11:32 27 

 
Example 299 is hard to solve by D&C algorithm in 
the half-an-hour time-period because of the large 
sub problem with 38 vessels. Example 377, similarly 
as example 100 in Class I, was not solved in a half-
an-hour period due to the bad estimations of the sub 

problems optimal solutions by BAPSolver(ω) 
procedure. In the second run example 377 was 
solved within the time limit of half-an-hour thanks to 
the much batter estimations during the work of the 
BAPSolver(ω) procedure. 

 
CONCLUSION 
We considered divide and conquer strategy for solving (minimum-cost) Berth Allocation Problem (BAP) with 
the static arrival of vessels and fixed vessel handling times. Proposed strategy implemented as D&C 
algorithm is not stand alone method for solving BAP. It is additional technique which can significantly reduce 
solving time of any standalone algorithm for solving BAP. Total correctness of the D&C algorithm for solving 
BAP is proved. The computational experiments performed only for discrete BAP (DBAP) fully justify the 
design and further development of D&C algorithm for solving BAP. For more than 98% of our test instances 
optimal solution was found in less than 30 seconds. Average runtime for finding optimal solution is 6.97 
seconds for the cases with up to 40 vessels, 5 berths and 56 time units and 9.65 seconds for the cases with 
up to 100 vessels, 8 berths and 112 time units. The most difficult problems were solved within the time limit 
of 1800 seconds. These results indicate that this method can be used for solving real-life (big sized) 
instances of BAP, depending on container port layout.  
The differences between the minimum and maximum solving times for a large number of vessels in the test 
instances indicate that D&C algorithm is worth further development. We find it especially worthwhile to 
investigate the implementation of parallel variant of the D&C algorithm. 
Moreover, the generalization of the algorithm to the hybrid and continuous BAP and the inclusion of crane 
assignment are natural avenues for further development of the algorithms presented here. 
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