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1. PRELIMINARIES AND RELATED RESULTS
Let R" be the n-dimensional Euclidian space, and R, R, the sets of all real nhumbers and nonnegative
numbers, respectively. Throughout this paper, the following convention for vectors in R™ will be followed:
x <yifandonlyif x; <y;,i =12,..,n,
x Syifand only if x; < y;,i =1,2,...,n,
x <yifandonly if x;Sy;,i = 1,2,..,n,but x = y
x > y is the negation of x < y.
Now, let us recall generalized operations of addition and multiplication introduced by Ben-Tal.
1) Let h be an n vector-valued continuous function, defined on R™ and possessing an inverse function h™.
Define the h-vector addition of x,y € R™ as
x@y=h"(h(x)+h®»))
and the h scalar multiplication of x € R" and a« € R as
a®x=h"(ah(x)).
2) Let ¢ be a real-valued ontinuous function, defined on R and possessing an inverse function ¢ 1. Then,
the @-addition of two numbers, @ € R and 8 € R, is given by
al+18 = 97 (p(@) + 9(B)),
and the ¢-scalar multiplication of « € Rand g € R as
Blla=e~' (Bo(@)).
Denote
mx=x'Ox*®.0x™xeRYI=12,..,m,
D] = a[+Hax[+] . [Hlapn, i =12,...,m,
a[-18 = a[+]((-D[]8,a, € R
In the above Ben-Tal generalized algebraic operations, it is worth nothing that g[-]Ja may not be equal to
a[-]B for @, € R. In addition it is clear that 1 ® x = x for any x € R® and 1[-]a = a for any a € R. For
a, B € Rand x € R", the following conclusions can be obtained with easy
p(al]B) = ap(B), h(a ® x) = ah(x),
a[=18=0" (p(a) — 9(B)).
Auvriel introduced the following concept, which plays an important role in our paper.
Definition 2.1Let f be a real-valued function defined on R, denote f(t) = ¢ (f(h‘l(t))),t € R™
For simplicity, write f(t) = ofh~'(t),t € R™ The function f is said to be (h, @) —differentiable at x € R™if
f(®)is differentiable at t = h(x),and denoted by V*f(x)=h~! (Vf(t)|t_h(x)). In addition, it is said that f is

(h, ) — differentiable on X c R™ if it is (h, ¢)— differentiable at each x € X. A vector valued function is called
(h, p)— differentiable on X c R"if each of its components is (h, ¢)— differentiableon X.
If f is differentiable at x, then f is (h, ¢) — differentiable at x. We obtain this fact by setting h and ¢ are identity
functions, respectively. However, the converse is not true.
Definition 2.2 Let X be a nonempty subset ofR" a functional F: X X X x R"is called (h, ¢)— sublinear if for
any x, x € X,
F(x,%;a; +ay,) = F(x,%; a))[+]F(x,X;a,),V a,,a, € R,
Fx,5;a ®a) = a[-]F(x,x;a),Va € R"a 2 0,
From the above efinition, we can easy obtain that if F is a (h, ¢) —sublinear functional then
Flx, 6@, a) S [I™)F(x,%a.), 0 ERYi=1,...,m
We collect the following properties of Ben-Tal generalized algebraic operations and (h, ¢) — differentiable
functions from literature, which will be used in the squeal.
Lemma 2.1 suppose that f is a real — valued function defined on R" and (h, ¢) — differentiable atx €
R™. Then, the following statements hold:
(@) Letx; e R\ A €Ri=12,...,m. Then
@ (4L ® xi):h_l(Z?;llih(xi)), @, xi:h_l(Z?L h(x").
(b) Lety;, a; € R, i=1,2,....,m. Then
ST (e (@) = @ (SR e (@), (B al=e " (B, o (ay)).
(c) Fora € R,a [-]f is (h, ¢)— differentiable at ¥ and V*(a[]f (X)) = a ® V' (%).
We need more properties of Ben-Tal generalized algebraic operations.
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Lemma 2.2 Leti=1,2,...,m. The following statements hold:
(@) Fora,B,y €R, thenal-](B[ly) = Bl-1(al]ly) = (@B)[ 1y
(b) For B,a; € R, then B[-][XiZ; a;] = X2, (B[-]ay).
(c) Fora,B,y €R, theny[-](al-18) = (Y [1a)[-](y[-]1B).
(d) Fora;, B; € Rthen ¥, (a[-]B) = 22%1 a; [-] Z?Qﬁi'

D @+1p) = ) a[+] i pi

i=1 =
Lemma 2.3 Suppose that function ¢, apears in Ben-Tal generalized algebraic operations, is strictly
monotone withg(0) = 0. Then, the following statements hold:
(@ Lety=20,a,8,y € Rand a = B. Then y[-]a = y[]B.
(b) Lety 20,a,8,y € R,and a < B. Then y[-]a = y[]B.
(c) Lety >0,a,8,y € Rand a < 8. Then y[-]a < y[-]B.
(d) Lety <0,a,8,y € R,and a = B. Then y[-]a = y[]B.
(e) Leta;,B; € R, i€ M={1,2,...m}. If a; = B;, for any i € M, then

m < y'm

=1 @ = X% Bi
If a; = B;for any i € Mand there exists at least an index k € Msuch that
(247 < ﬁkthen

= < Xitq Bi

Lemma 2.4 Suppose that ¢ is a continuous one-to-one strictly monotone and onto function with ¢(0)=0.
Leta,p € R . Then
a<pBoea-18<0

aspea-lps0
al+]f <0=a < (-D[IB

a[+]f <0=a < (-D[]B
a[+]fs0=a=(-D[]B
Throughout this paper, we further assume that h is a continuous one-to-one and onto function with h(0) = 0.
Similarly, suppose that ¢ is a continuous one-to-one strictly monotone and onto function with ¢(0) = 0.
Under the above assumptions, it is clear that 0[-]a = a[-]0=0, for any a € R.
Let X be a nonempty subset of R, C: X X X X R® - R is (h, ¢)— convex and the functions:
= f):X—>REand a = (a,, ..., a,,): X > R™ are (h, ) — differentiable on the set X, with respect to the
same (h, @). Let p = (p!, p?), where p' = (pi, ..., p1) € R¥, p? = (p?,...,p2) € R™.
Let6(:,): X XX - R.
Consider the following multi-objective programming problem:
(P min f(x) = (fi(x), ..., fr(x)),x € X € R™, such that a(x) = 0.
Let X, denote the feasible soltions for (P;), ,, assumed to be nonempty, that is:

Xo ={x € X/a(x) =0}

We denote K = {1, ...,k}, M = {1, ...,m}.
For x € X,, we denote M (%) = {j € M, q;(¥) = 0}.
Definition 2.3For i € K, (f;,a) is (h, @) — (C,p, 6)-type | atx € X if for all x € X,,, such that
LA 2 Cox(VA@)+(pi 160G ®) ) i € M
and
(~DHG @) Z Cos (VD) [+1 (0?16, D)) ,j € M
In the above definition x # ¥ and (16) is a strict inequality, then we say that (f;, a) is semi-strictly (h, ¢) —

(C,p,0)-type | at x.
Definition 2.4For i € K, (f;,a) is said to be quasi (h, ¢) — (C,p,0)-type | at X € X if for all x € C such that
k k

YA = fi) =
i=1 i=1
k

k
Y sV A@) 41 Y (DI 66,0 0,
and =1 =1
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14
DM g @ =0=
=1

14 14
Y Cex(a@) [+ ) (P 6 D) S 0.
j=1 j=1

Definition 2.5For i € K, (f;,a) is said to be pseudo (h, ¢) — (C, p, 0)-type | at X € X if for all x € C such that
Z Coxl(V£,) [+]Z(p3)[] 606D 20

Zﬁ(x) Zﬁ(x)

Z Cox (V') [+]Z(p,2)[] 6,22 0=

j=
(- 1)[]2 14 (%) 2 0.
Definition 2.6For i € K, (f;,a) is said to be pseudo (h @) — (C,p,0)-type l at x € X if for all x € C such that
k k

Zﬁ(x) ;me =

k
2. Ces(V ) [+]Z(p3)[] 6(x, 1) 20,

i=1 i=1

and

and

Z Cox (V') [+]Z(p,2)[] 6,22 0>
j=
(D00 20,

Definition 2.7For i € K, (f;,a) is said to be pseudo quasi (h, ¢) — (C,p,0)-type | at x € X if for all x € C such
that

Z Cox((7 () [+]Z(p3)[] 00,020
Z fi(9) _Zﬁ(x)

14
DM g @ =0=

j=1

and

14
> Ces(7a®) [+1 ) (1)1 0Ge®) S 0.
j=1 j=1

3. SUFFICIENT OPTIMALITY CONDITIONS

In this section, we establish sufficient optimality conditions for a feasible solution x to be a weak minimum
for (P)p,, under the (h, @) — (C, p, 6)-type | and pseudo quasi (h, ) — (C, p, 6)-type | assumptions.

Theorem 3.1 Suppose that there exist a feasible solution x € C and 1 = (4,,...,4,) € R¥, 1> 0,1, 20,j €
M (%), T, A, +X0%, it = 1 such that

(@5, (1 ® V') ® (®eme) (1, ® V'ay () )=0
If for i € K, (f;, 9;c)) is (h, @) — (C, p, 0)-type | at % with
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(B (Lo)16CD)H(Z ey @eD [0 ) 2 0,

where a;z) = (a;) jejx)- Then x is a weak minimum for (P;)y,q,-
Theorem 3.2 Suppose that there exist x € C and 1 = (4, ..., 4;) € R¥,
A=0,,20,j €M(%).

If for i € K, (4,[1f;, Gyy) is pseudo quasi (h, @) — (C, p, 0)-type | at X with

(D166 D)H(Zjer 0D [0, %)) Z 0,

Where G, = (G)) jejx), G; = i1;[-19;, then X is a weak minimum for (P,)y,,,.
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