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Abstract. In this paper is presented an algorithm which solves the transportation problem with fuzzy values 
for supply and demand and with the integrability condition imposed to the solution. The algorithm is exact 
and calculable effective even if the problem is formulated into a general manner, i.e. the fuzzy values for 
supply and demand can differ one from another and they are fuzzy numbers of a certain type.  
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1. INTRODUCTION 
The transportation model has many applications, 
not just as the transportation problem itself, but in 
the production scheduling problem.  
The parameters of each transportation problem 
are the unitary costs (the profits) and the values 
for supply and demand (production, storage 
capacity). In practice, these parameters are not 
always known and stable. In the next approached 
problem it is supposed that the unitary costs (the 
profits) are known exactly, but the estimation of 
the values for supply and demand (capabilities) is 
approximate. This inaccuracy results either from 
missing information or by a certain flexibility in 
planning the capabilities of the considered factory. 
A frequently used mean to express the inaccuracy 
are the fuzzy numbers. 
In the classical transportation problem with integer 
values for supply and demand, there is always an 

integer solution. This solution can be found using 
the simplex transportation method, which is one of 
the most used methods for solving the 
transportation problems. This property (i.e. the 
possibility of finding an integer solution) is not kept 
in the fuzzy transportation problem with fuzzy 
values for supply and demand, even if the 
characteristics of the existing fuzzy numbers in 
the problem are integers. To obtain an optimal 
integer solution (which would be necessary from 
flexibility rations) a special algorithm is used. Such 
an algorithm is presented in S. Chanas and D. 
Kuchta.  
In this paper, we present an algorithm which 
determines the optimal integer solution of a fuzzy 
transportation problem, more general than that 
considered in S.Chanas and D.Kuchta, using only 
the classical (non-parametric) transportation 
problem.  

 
2.  THE PROBLEM FORMULATION AND USED NOTATIONS 
The considered fuzzy numbers are of  L R−  type. An L R−  type fuzzy number A  is: 
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where , , ,A Aa a α β ∈ +  and ,L R  are form function. 

• F is a form function if F if continuous, decreasing on [ )0,∞ , ( )0 1F =  and strictly decreasing on 
that side of the domain on which F is positive.  

Example: 
• Linear function: ( ) { }max 0,1 , 0F y y y= − ≥ . 

• Exponential function: ( ) , 1, 0pyF y e p y−= ≥ ≥ . 

• Power function: ( ) { }max 0,1 , 1, 0pF y y p y= − ≥ ≥ . 

• Rational function: ( ) ( )1/ 1 , 1, 0pF y y p y= + ≥ ≥   

There are particular cases when the functions L  and R  don’t have any signification.  
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• a = −∞ , ( ) 1A tµ = , t a≤ . 

• a = +∞ , ( ) 1A tµ = , t a≥ .  

• 0Aα = , ( ) 0A tµ = , t a≤ . 

• 0Aβ = , ( ) 1A tµ = , t a≥ . 
The fuzzy transportation fuzzy considered here is enounced such as follow: 
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where iA , jB  are fuzzy numbers on the form: 

( ), , ,
i iii i A A i iA a a L Rα β= − ,  1,i m= , 

( ), , ,
j jjj j A A j jB a a S Tα β= − , 1,j n= . 

 
• x  is matrix solution (which components are the corresponding decisional variables), i.e., 

( )ij m n
x x

×
= . The unitary transportation costs ijc ,  1,i m= , 1,j n=  are supposed to be crisp numbers.  

This problem formulation showed that the result is expressed using a fuzzy number noted with G : 

( )0, ,0,
G G

G L R
G c β

−
= −∞  

This problem is more complete than the one treated in S.Chanas and D.Kuchta. The complexity consist in 
the following: here the pairs ( ),i iL R , 1,i m=  and ( ),j jS T , 1,j n=  can be different, while in S.Chanas 

and D.Kuchta they must be identical. 
In the next definition the fuzzy constraint concept and the fuzzy objective concept is defined. 

Definition 2.1 
 Let  x  an arbitrary solution of the problem (2.1). 

a) The value ( )
1 1

min , 1, , , 1,
i j

n m

c A ij ij
j i

x x i m x j nβµ µ µ
= =

     = = =    
    

∑ ∑  is called the restrictions 

satisfaction degree for the problem (2.1). 

b) ( ) ( )( )
1 1

m n

G G G ij ij
i j

x c x c xµ µ µ
= =

 
= =  

 
∑∑  is called the objective satisfaction degree (the (2.1) problem 

result) by x . 
• According to Belmann–Zadeh approach, a solution is called an optimal solution if it is a solution to a 

problem where the restrictions and the objective are of maximal degree.  
Definition 2.2 
The maximized solution is a vector x  for which ( ) ( ) ( ){ }0 min ,c Gx x xµ µ µ=  attained the maximum. If the 

maximum value is 0, we say that the problem (2.1) is insoluble. 
 
3. THE SOLUTION OF THE PROBLEM  
According to Definition 2.1, solving the problem (2.1) is equivalent with solving the following mathematical 
programming problem: 

( ) ( ){ }min , maxc Gx xµ µ →  
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0;  , 1, ,   1,ij ijx x i m j n≥ ∈ = =  
Solving this mathematical programming problem is equivalent with solving the following problem: 
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To understand the following, we give the definition: 
 Definition 2.3 

Let A  be a fuzzy number. The λ -cut of A , denoted Aλ , is ( ){ }AA t tλ µ λ= ∈ ≥ . 

Now, it easy to observe that the hypotheses at iA  and jB  considered in this problem, the λ -cuts 

iAλ  and jBλ  are intervals, given by: 
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• The λ  - cut for the fuzzy objective G  is the set: 

                                         ( )( 1
0, G GG c Rλ λ β− = −∞ +                    (2.4) 

Take this into account the problem (2.2) can be rewritten as follows: 
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The above problem is not a transportation problem because of its objective function and the first condition. 
This is why we cannot use the transportation algorithms to solve it. But, we can associate an interval 
transportation problem. Further, the solution of this auxiliary problem allows finding the solution of the 
problem (2.5), and from here, of the problem (2.1). 
This auxiliary problem is given by:  
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• Solving the problem (2.6) for a fixed 0λ > , allows to find if (2.5) is possible for this value of λ . Is suffices 

to verify if the value of the objective function value of the problem (2.6) verifies the first condition from 
(2.5). It is necessary that the maximum value ofλ  for which (2.5) is possible and the corresponding 
solution of (2.5). 

• The end points of the intervals that appear in the conditions of the problem (2.6) can be non–integers. This 
means that after we pass at the classical transportation problem described in (2.6), we could have a 
classical transportation problem with non–integers values for supply and demand, and that’s the reason 
why the classical algorithm does not guarantee obtaining of an integer solution. However, one can be 
replace the problem (2.6) with a problem (2.7), which has already the integer end points for the supply 
and demand intervals without changing the set of the possible and optimal solutions.  

For defining the problem (2.7) we use the following notation: 
Definition 2.4 
Let A  be an interval. [ ]A  is the largest interval with integer end points contained in A , i.e. [ ] [ ],A a b= , 

where { }mina t t A= ∈ ∩ , { }maxb t t A= ∈ ∩ .  

With this notation the problem (2.7) which replaces the problem (2.6) is given by: 
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• The sets of the possible and optimal solutions of (2.6) and (2.7) are identical because of the integrability 
condition imposed to x . 

• For 0λ >  fixed, it can be resolved (2.5) by replacing it with a classical integer values for supply and 
demand transportation problem and it can be applied, for example, the simplex algorithm transportation 
problem. 

• If one can solve (2.7) (or the corresponding classical transportation problem) as a problem with 
parameterλ , also one can be solved and the initial problem. 

• However, the coefficients of the problem depend nonlinear on λ  which determine some difficulty. To avoid 
solving a parameter transportation problem we propose the following algorithm which implies just solving 
a few classical transportation problems. 

• The algorithm begins from the largest values of λ , i.e., 0λ =  and 1λ = . Is investigated for which values 
of λ , the problem (2.5) is admissible. 

If it is impossible for 0λ = , (2.1) is impossible. 
If (2.5) is possible for 1λ = , then 1λ =  the optimal value of the objective function in (2.5) and the 

corresponding solution of (2.5) is, again, a solution for the problem (2.1). 
If the problem (2.5) is possible for 0λ =  and impossible for 1λ =  (the most frequent case), we 

consider 1/ 2λ = , and then [ ]0,1/ 2 . 
Acting in this manner we will approach from both sides to the optimal value of the objective function 

of (2.5). Thus, at each step one consider [ ]1 2,λ λ  such that (2.5) is possible for 1λ λ=  and impossible for 

2λ λ= . It’s not necessary to divide this interval, when (2.7), for 1λ λ= , is a minimal extension of (2.7) for 

2λ λ=  (just like in the definition 2.5). 
Definition 2.5 
The problem (2.7) for 1λ λ=  is a minimal extension when the problem (2.7) for 1λ λ=  is identical with the 

problem (2.7) for λ λ∗=  where: 
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From above section it follows that the corresponding algorithm (where the consecutive intervals of the values 
is divided in two) is finished after a finite number of steps, if we check at every step if the problem (2.7) for 

1λ λ=  is a minimal extension of the problem (2.7) for 2λ λ= . 

 The user can determine [ ]1 2,λ λ , starting with the conditions that must be verified. 
 The algorithm is given by: 
 
 
Step 1 
 Set ( )1 0λ = , ( )2 1λ = . 
Step 2 

 We solve the problem (2.7) for ( )1λ λ= . If the problem is possible and ( )( )( ) ( )11C x Gλλ ∈ , then  

GO to Step 3. Else, the problem (2.1) is impossible.  
Therefore, STOP (the problem (2.1) impossible and ( ) 0D xµ = , for all x ). 

Step 3  

 We solve the problem (2.7) for ( )2λ λ= . If the problem is possible and ( )( )( ) ( )22c x Gλλ ∈ , then 

STOP, and ( )( )2x λ  is the optimal solution of the problem (2.1) and ( )( )( )2 1D xµ λ = . Else, GO to Step 

4. 
 
Step 4 

Set ( ) ( )( ): 1 2 / 2mλ λ λ= +  and GO to Step 5. 

Step 5 
 We solve the problem (2.7) for : mλ λ= . If the problem is impossible, then ( )2 : mλ λ=  and GO to 
Step 6. Else, there are 3 possible cases: 
 i) ( )( ) ( )( )G m C mx xµ λ µ λ= , result that ( )mx λ  is an optimal solution of the problem (2.1) and 

STOP. 
 ii) ( )( ) ( )( )G m C mx xµ λ µ λ> , then we set ( ) ( )1 C mxλ µ λ=  and GO to Step 6. 

 iii) ( )( ) ( )( )G m C mx xµ λ µ λ< , one set ( ) ( )( )2 : C mxλ µ λ=  or, if ( ) ( )( )2 C mxλ µ λ=  GO to Step 

6. 
Step 6 
 If ( ) ( )2 1λ λ ε− > , then GO to Step 4. Else, we verify if the problem (2.7) for ( )1λ λ=  is an 

minimal extension of the problem (2.7) for ( )2λ λ= . If it is not, GO to Step 4. Else, STOP. A solution 

( )( )1x λ  or ( )( )2x λ  is optimal for the problem (2.1). 

 If the problem (2.5) is impossible for ( )2λ λ= , then ( )( )1x λ  is an optimal solution for the problem 

(2.1). ε  is given by the user ( )0.05 0.1ε≤ ≤ . 
 
4. NUMERICAL EXAMPLE 
The above algorithm is illustrated with the following example. 
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The fuzzy objective is determined by the following fuzzy number ( )0,300,0,500
L L

G
−

= .  L  replace the 

linear form function , E  the exponential function with parameter 1p = ,  P  the power form function with 
parameter 2p = ,  R  the rational function with parameter 1p = . The λ -cuts for the fuzzy values of the 
supply and demand, and for the fuzzy objective with the considering form function are (taking account 
relation (2.3) and (2.4)): 

( )1 10 5 1 ,10 5 lnAλ λ λ = − − − ⋅  , 

  ( )2 16 5ln ,16 5 ln 1Aλ λ λ = − + ⋅ −  , 

                                             1 10 5 1 ,10 5lnBλ λ λ = − − −  , 

                                             ( )2 9 4 1 ,9 4lnBλ λ λ = − − −  , 

                        ( )3 1 1 ,1 1 /Bλ λ λ λ = − − + −  , 

                        ( )0,300 1 500Gλ λ = + − ⋅  . 

  
The steps of the algorithm are: 
 
Step 1 
 ( )1 0λ = , ( )2 1λ = . 
Step 2 
 The problem (2.7) is possible for 0λ =  and ( )( ) 00c x G∈ , where [ ]0 0,800G = . 

Step 3 
 The problem (2.7) is impossible for 1λ = . 
Step 4 
 ( )0 1 / 2 0.5mλ = + =  
Step 5 
 The problem (2.7) is possible for 0.5λ =  and ( )( ) ( )( )0.5 0.74 0.5 0.5G Cx xµ µ= > = . 

Step 6 
( ) ( )2 1 1 0.5 0.5 0.05λ λ− = − = > . 

Step 4 
 ( )0.5 1 / 2 0.75mλ = + =  
Step 5 
 The problem (2.7) is possible for 0.75λ = . Thus, ( )2 : 0.75λ = . 
Step 6 
 ( ) ( )2 1 0.75 0.5 0.25 0.05λ λ− = − = > . 
Step 4 
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 ( )0.5 0.75 / 2 0.625mλ = + = . 
Step 5 
 The problem (2.7) is possible for 0.625λ =  and ( )( ) ( )( )0.625 0.54 0.625 0.64G Cx xµ µ= < = . 

Thus, ( )2 : 0.64λ = . 
Step 6 
 ( ) ( )2 1 0.64 0.5 0.14 0.05λ λ− = − = > . 
Step 4 
 ( )0.5 0.64 / 2 0.57mλ = + = . 
Step 5 
 The problem (2.7) is possible for 0.57λ =  and ( )( ) ( )( )0.57 0.58 0.57 0.6G Cx xµ µ= < = . Thus, 

( )2 : 0.6λ = . 
Step 6 
 ( ) ( )2 1 0.6 0.5 0.1 0.05λ λ− = − = > . 
Step 4 
 ( )0.5 0.6 / 2 0.55mλ = + = . 
 
Step 5 
 The problem (2.7) is possible for 0.55λ =  and ( )( ) ( )( )0.55 0.58 0.55 0.6G Cx xµ µ= < = . Since 

( ) ( )( )2 0.55 0.6C xλ µ= = , ( )2 : 0.55λ = .    

Step 6 
 ( ) ( )2 1 0.55 0.5 0.05 0.05λ λ− = − = ≤ .  

 But the problem (2.7) for ( )1 0.5λ λ= =  is not a minimal extension of the problem (2.7) for 

( )2 : 0.55λ λ= =  and Step 4 is executed one more time. 
Step 4 
 ( )0.5 0.55 / 2 0.525mλ = + = . 
Step 5 
 The problem (2.7) is possible for 0.525λ =  and ( )( ) ( )( )0.525 0.7 0.525 0.5488G Cx xµ µ= > = . 

Thus, ( )1 : 0.5488λ = . 
Step 6 
 ( ) ( )2 1 0.55 0.5488 0.012 0.05λ λ− = − = < . Therefore, we verify if the problem (2.7) for 

( )1 : 0.5488λ λ= =  it is minimal extension of the problem (2.7) for ( )1 : 0.55λ λ= = . Since the answer is 

positive, the algorithm ends here. One of the solutions ( )0.5488x  and ( )0.55x  is an optimal solution for 

the problem (2.1). Since ( )( ) ( )( )0.55 0.58 0.5488 0.5488D Dx xµ µ= > = , the second solution is better 

than the first one. The complete form of this solution is given by the following table. 
 

Receiver 
Distributor 1 2 3 

1  8  
2 12 1 1 

Table 1 
 

Total cost = 510 
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( ) 0.6C xλ = , ( ) 0.58G xµ = , ( ) 0.58D xµ = . 
 
To illustrate the entire Step 5 of the algorithm is showed how the problem (2.5) is constructed and solved for 
a certain value of the parameter. Let 0.55λ = . In this case: 
      [ ]0.55

1 7.55,12.99A = , [ ]0.55
2 13.01,18.25A = , 

      [ ]0.55
1 6.46,12.99B = , [ ]0.55

2 7.2,11.39B = , [ ]0.55
3 0.33,1.82B = , 

  [ ]0.55
1 8,12A  =  , [ ]0.55

2 14,18A  =  , [ ]0.55
1 7,12B  =  , [ ]0.55

2 8,11B  =  , [ ]0.55
3 1,1B  =  . 

The problem (2.5) with interval values for request and offering can be reduced, according to Section 4, to a 
transportation problem with forbidden routes (given in table 2) which optimal is given in table 3. 

 
 1 2 3 4 5 6 7 Supply 
1 10 20 30 10 20 30 •  8 
2 20 50 60 20 50 60 •  14 
3 10 20 30 10 20 30 0 4 
4 20 50 60 20 50 60 0 4 
5 •  •  •  0 0 0 0 8 

Demand 7 8 1 5 3 0 14  
Table 2 

 
 
 
 

 1 2 3 4 5 6 7 Supply  
1  7   1   8 
2 7 1 1 5    14 
3       4 4 
4       4 4 
5     2  6 8 

Demand 7 8 1 5 3 0 14  
Table 3 

 
The optimal solution of the problem is reduced, after the application of the formulas from the end of section 
4, to the solution of the initial problem (2.7) (which is given in table 1). Along to the last application of Step 6, 
during verification of the optimal condition, λ∗  (defined in Definition 2.5) is calculated from: 

  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 1 1

1 2 2 3 3

7 , 13 , 13 , 6 , 6
max 0.5488

13 , 7 , 13 , 0 , 2
A A A B B

B B B B B

µ µ µ µ µ
λ

µ µ µ µ µ
∗

  = = 
  

. 

The problem (2.7) for λ λ∗=  is analogue with that for ( )1λ λ=  which goes to the stop of the algorithm. 
 
CONCLUSIONS  
In this paper it was given an algorithm for solving the fuzzy transportation problem (with fuzzy values for 
supply and demand and also for the objective) in the sense of maximizing the satisfaction both objectives 
and restrictions. This algorithm demand beside a simple transformations, just solving the classical 
transportation problem (particulary is not necessary solving the parameter problem). The fuzzy numbers 
which defines the problem must not be trapezoidal. 
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