
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

EXPLORING THE POSSIBILITIES OF A SELF-REGULATING SDN CONTROLLER

Rares MANIU1

Laurentiu Alexandru DUMITRU2
1 Eng., Ph.D. (c), Military Technical Academy, 39-49 George Cosbuc Bvd., Bucharest, Romania, rares.maniu@yahoo.com
2 Eng., Ph.D. (c), Military Technical Academy, 39-49 George Cosbuc Bvd., Bucharest, Romania dlaur@nipne.ro

Abstract: As the number of networked devices increases, traditional routing algorithms tend to be non-optimal for mesh topologies.
With the power of controlling the data flows in Software Defined Networks, a controller can implement a dynamic communication path
for each flow. If, in the same context, the controller would also implement a history evaluation algorithm combined with a genetic search
method, it could achieve a dynamic resource allocation that tends to an optimal solution. This paper proposes the implementation of
such a system on top of an Open Flow controller.

Introduction
In the context of increasing data speeds being delivered to
low-powered processing devices and the emerging of the
highly discussed Internet of Things, computer networks will
also expand, and evolve, as the need for more bandwidth,
higher speeds and lower latencies become more obvious.
These networks will contain more nodes in which the
delimitation between client node, edge router or core router
will not be so clear as is it now. Classical computer networks
use routers with algorithms that have only one major dynamic
factor: the distance. Typically, the bandwidth usage, link
quality, and other subjective factors do not play a role into the
routing process. Furthermore, the Internet, in its current form,
runs manly with IP. Thus, if someone wants to run a particular
protocol, it must encapsulate it over IP. Route optimizations
are point-to-point virtual circuits are now in the responsibility of
the network administrators. Since traffic patterns can change
over time and networks are being reconfigured automatically
(e.g. cloud networks), the help of an automated solution that
can optimally configure a network and, at the same time,
provide on-demand private links can be seen in the form of
Software Defined Networks (SDN) governed by an intelligent,
self-aware controller.
Software defined networks allow decoupling the control plane
from the date plane. Network switches can be reconfigured in
real-time to change their CAMs rules according to the
indication of a controller to which the switch is connected.
There is, at least one, SDN controller that has a global view of
the network and controls the participating switches. Since all
the switches are configurable, there is no need of distance-
based, hop-to-hop routing algorithms. A flow can be imposed
by the controller, from entry to exit, according to a set of rules.
This permits multi-link routing based on different criteria.
Network switches that participate in the routing process must
support the OpenFlow protocol. All of them connect to the
SDN controller. It is the controller’s responsibility to configure
the flow tables on each switch.
The proposed solution will provide optimal multi-link routing in
a SDN environment based on the SAEN [1] architecture that
uses multiple classifiers. These classifiers are particular to
each type of traffic and are a core element for providing an
optimal real-time traffic distribution. The search for solutions is
done using genetic algorithms, statistic prediction and real-
time analysis. By using these methods, the network will
provide natural routing paths that approach satisfy both lower-
cost routing and human-like, heuristic decisions. A routing
method that keeps track of history and it's able to self-adjust in
order to respond to the environment's needs can be extremely
useful when the node numbers increase and manual
configuration time also increases.
Related work
 Software defined networks are relatively new and
have not yet received widespread implementations. However,
several major vendors have already started to commercialize
OpenFlow-capable switches that can participate in SDNs.
OpenFlow [2] was originally proposed as an alternative for the
development of experimental protocols on university
campuses, where it is possible to test new algorithms without
disrupt or interfere with the normal operation of traffic of other
users. Vendor alternatives exists, but, these come at a cost
and are closed-source. OpenFlow is an open standard that

can be implemented on many hardware modules without any
major difficulties. Its major advantage is that is leverages
existing functions such add/delete entries in the RIB and uses
standard packet actions such as accept or drop. Although still
evolving, there are a few SDN controllers that have proven to
be reliable and can provide both performance and
configurability. Khondoker, Rahamatullah, et al. have
compared there controllers in their study [4]. An overview of
the SDN evolution can be found in [3]. The paper shows the
evolution of this technology, why it is so important and where it
may be applicable.
The intention of this study is to explore the possibilities of
having a self-regulating SDN controller, using genetic
algorithms and history extrapolation for dynamically
reconfiguration of the network. Such an approach, not in a
SDN context, is proposed by the Self Adaptive Evolutionary
Network (SAEN) architecture [1]. The paper discusses the
already mentioned limitations of classical routing algorithms
and proposes history recording for prediction purposes
combines with evolutionary algorithms that compute the
routing paths, instead of shortest path methods.
CODA [6] proposes a hop by hop back pressure-based, with
periodical sampling of the link and buffer loads, method for
congestion avoidance and control in sensor networks. Genetic
algorithms are also used by Arnab Raha et. al [5], but, as with
traditional algorithms, multi-link is not a conditional factor in the
route-decision process.
SDN Architecture
The main idea of the Software Defined Networking is that is
possible to apply a high level of abstractization in network
control. It allows administrators to manage services,
independent from the systems that make decisions about
routing, from systems that forward traffic to destination. It
means that in SDN exist two planes: control plane and data
plane.

The SDN architecture is:
Directly programmable: Network control is directly
programmable because it is decoupled from forwarding
functions.
Agile: Abstracting control from forwarding lets administrators
dynamically adjust network-wide traffic flow to meet changing
needs.
Centrally managed. Network intelligence is (logically)
centralized in software-based SDN controllers that maintain a
global view of the network, which appears to applications and
policy engines as a single, logical switch.
Programmatically configured. SDN lets network managers
configure, manage, secure, and optimize network resources
very quickly via dynamic, automated SDN programs, which
they can write themselves because the programs do not
depend on proprietary software.
Open standards-based and vendor-neutral. When
implemented through open standards, SDN simplifies network
design and operation because instructions are provided by
SDN controllers instead of multiple, vendor-specific devices
and protocols.

58

mailto:rares.maniu@yahoo.com
mailto:dlaur@nipne.ro

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

At the heart of the SDN lies the SDN controller that
communicates with the switches using the OpenFlow protocol.
The protocol itself stated from the production version 1.0 and
has now reached version 1.4. Each version has added new
functionality and improved the existing one. The latest version
provides support for applying rule bundles in an atomic-like
operation. OpenFlow messages regard the control plane of the
switch, which, in turn influences the data path. A switch can
connect to multiple SDN controllers in order to achieve fault
tolerance or, higher throughput. When there is not default
action and the incoming packet does not match any rules in
the forwarding base, the controller is responsible for
generating an action for that packet.

Figure 1

OpenFlow supports two methods of flow insertion: proactive
and reactive. Reactive flow insertion occurs when a packet
reaches an OpenFlow switch without a matching flow. The
packet is sent to the controller, which evaluates it, adds the
appropriate flows, and lets the switch continue its forwarding.
Alternatively, flows can be inserted proactively by the
controller in switches before packets arrive. In the case of
proactive flow insertion, the arriving packet will never be sent
to the controller for evaluation since it matches the proactively-
inserted flow.As normal FIB entries, these contain selectors,
counters and actions. Selectors and actions decide what to do
with the packet while counters can be used for statistical
information. The counters are particularly important due to the
fact that SAEN is history-based. As the Route Monitor in
SAEN can be compared to a SDN controller, blending both of
them will create the desired solution – a network node capable
of having a top level view of the network and, using this
information, capable of reconfiguring the devices in order to
implement a optimal paths based on the multi criteria
evaluation that is has computed. This node, the SPM (SDN
Path Monitor) will implement the history-based route search
algorithm described in SAEN.
As discussed in [4], different controllers offer different
programming approaches for interacting with the network. The
SPM can be implemented as a standalone server or, it can
blend in the existing controller, given that this provides the
necessary API functions. In the first case, the SPM will
implement a minimal set of functions from the OpenFlow
protocol that will allow it to query network devices for their
counters and events. The full list of SDN-capable devices
would be retrieved from the SDN controller, along with their
interconnections. This information is critical for the
evolutionary search. If the SDN controller can receive all the
information requested by the SPM, then the SPM could be
implemented as a module. The other approach would be to
fully integrate the OpenFlow protocol into the existing SAEN
RouteMonitor. However this will create a redundant element
that doubles the SDN controller. No particular advantage can
come from this approach.
When implementing the SPM as a distinct software
component, it is essential to easily communicate with the
controller. Five major controllers were compared.
The NOX/POX pair are one of the oldest. POX (python-based)

is a continuation of NOX (C-based). In terms of speed, NOX
performs very good.
Ryu is a component-based controller supported by NTT. It has
a particular feature that enables it to use many programming
languages for constructing new model from existing
components or from new ones.
A controller based on Ruby which is centered around building
easy code is Trema.
OpenDaylight is one major initiative for powering SDN
networks. The goal of this project is to provide a robust code
platform that covers all the major components of any SDN
architecture. It is open-sourced and java based.
The FloodLight controller, a project which is derived from
Beacon, is self-contained and can run out-of-the-box on any
operating system. It is also java based but also exposes a
REST API that makes it extremely useful for the testing of the
proposed SPM daemon. The SPM makes use of the Static
Flow Pusher API. The Static Flow Pusher is a Floodlight
module, exposed via a REST API, that allows a user to
manually insert flows into an OpenFlow network.
 An evolutionary approach
Even if SDN is a new concept in network management, and is
developed for large and dynamic networks it is not enough
when a network presents an exponential growth, following an
anarchic scalability.
The idea of “Internet of Things” that offer connectivity between
devices, systems, services, covering a large number of
protocols, applications and domains of activity and the concept
of machine-to-machine communication increase the
dynamicity. And the multitude of devices with communication
and computing facilities sustain the development of high
networks. In this context, Software Defined Networking will
need to work for all users, not just for very specific IT systems
like clouds or data-centers.
Software Defined Networking made the transition between a
global-fixed network path and and a dynamically modifiable
one. SDN means a combination between a virtualization level
and a network operation system. The operator works with an
abstract view of network. The link between this view and the
configuration of network devices is being generated by
software. The virtualization level translates the abstract view in
a global view of network. The network operation system
translates the global view in a configuration for network
elements.
 The global network view provides a real-time state of the
entire infrastructure. With this centralized control, SDN is
capable to build a global view of topology for all network
elements connected and this produces a simplified network
management. The central database with information about the
structure of network is important in the implementation of
optimized routing engine. Actually, the routing calculating
process that is based on Dijkstra’s algorithm, works well for
classical network management, but due to the fact that it runs
in time of 𝑂𝑂(𝑉𝑉2), where V is the number of nodes, it is time
consuming for big networks and can’t offer solutions in timely
manner for big, evolving networks.
Because of the high-dynamicity of modern networks, a SDN
will need to present very quickly a solution for new
configuration, when changes occur. It must generate proper
routes and, based on this, the configuration for network
elements, not necessary the best configuration, but one that
can respect all demands. That means it is a multi-criteria
optimization. Genetic algorithms represent one of techniques
well adequate to solve such types of problems, based on
natural selection. It can offer solutions for high-complexity
problems.
The main feature of a genetic algorithm is that it can perform a
global search in solution space, maintaining a number of
possible solutions from generation to generation. Because of
the interdependence between objectives, the genetic algorithm
will generate a set of solutions, called Pareto optimal solution.

Unlike other optimization techniques, genetic algorithms can
analyze in parallel a high number of solutions, they don’t need
apriori knowledge, just only objective function value, operates

59

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

with an encoded set of parameters and uses stochastic
transition rules. As
advantages, a genetic algorithm is easy to implement and
reconfigure, the solution is closed to the global optimum, offers
good results for large seeking space, with a big number of
variables. Can be used for non-linear, multi-objective
optimization, generating several solutions that meet the
requested criteria. Require just objective function, with little
knowledge about the problem and is very robust due the large
number of solutions processed in parallel at each stage.
As disadvantages, the process is a high resource consumer
due to the many iterations needed and to the parameters that
are dependent on the implementation of genetic operators,
number of generation, type of selection and other criteria.

A genetic algorithm can be described as:

procedure GENETIC-ALGORITHM

Generate initial population P0;
Evaluate population P0;

Generation counter g=0;
While fitness function not satisfied repeat
 Select chromosomes from Pg to copy into Pg+1;
 Crossover chromosomes from Pg and put into Pg+1;
 Mutate chromosomes from Pg and put into
 Pg+1;
 Evaluate some elements of Pg and put into
 Pg+1;
 Generation counter g = g+1;
End while
End procedure

 The genetic algorithm starts with initial population
generation, each element in the population is called as
chromosome. Each chromosome is a solution by itself. It is
generated randomly or heuristic, from all possible routes in the
network, starting from initial note. The initial population must
be distributed in all search space. A small population produces
a local optimum and a large population needs more
computational resources. Each chromosome is evaluated for
fitness. This value indicates the quality of this chromosome in
population and is generated based on fitness function. New
offspring are generated from the chromosomes; using
operators like selection, crossover or mutation add the
chromosomes with the best values for fitness function are
moved to the next generation. The process is repeated until
the chromosomes have the best solution for problem.
Implementation
A genetic algorithm was implemented to test the possibility to
generate a set of routing solution in a timely manner for a
network with a big number of nodes and links.
The chromosome defines the route and its genes represent
nodes. A chromosome encodes the problem by presenting the
node IDs between source to destination. First gene is the
source and last is the destination. The chromosome length is
the number of nodes in network. Because the length of route is
variable, the remaining locus in chromosome is completed with
value 0.
 The initial population affects the performance of genetic
algorithms. Its size and structure in important because it must
be uniform distributed in the entire search space to obtain a
global minimum not a local minimum of fitness function. The
number of elements in population size is important because
the computational time of algorithm is proportionally with this
number. The initial population can be generated heuristic or
randomly. Here, we choose to generate it using random
initialization to provide a adequate distribution of chromosome
in search space.
Fitness function measures the quality of a chromosome in
population. It is an important element of a genetic algorithm
because it introduces a criterion for selection between

chromosomes. In this algorithm, the fitness function is a sum
of link costs in a route, being like this:

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝐶𝐶𝑔𝑔𝑓𝑓(𝑗𝑗),𝑔𝑔𝑓𝑓(𝑗𝑗+1)
𝑙𝑙𝑓𝑓−1
𝑗𝑗=0

 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the fitness value for chromosome nr. I, 𝑙𝑙𝑓𝑓 is the
length of the chromosome (for this implementation is the
number of nodes in network) and C is the link cost between 2
adjacent nodes in route.
All the values about existence a link between nodes and the
values for cost of links are provided from central database of
the SDN infrastructure, the SPM.
The transition between populations is made using the
selection procedure. It improves the average quality of
population and ensures the promotion of well-adjusted
individuals to the next generation. In genetic search wo types
of selections exist: proportional and ordinal based.
Proportional selection means that the chromosome is selected
based on its fitness relative to the fitness of other
chromosomes in population. Ordinal-based selection means
that the chromosome is selected based on its rank (direct
proportionally with fitness value) within population. In this
implementation, two chromosomes are evaluated according
fitness value and the one that is fitter is selected.
Crossover operators produce the exchange information
between two chromosomes, being the most important operator
in a genetic algorithm. It exists two types of crossover: with
one-cut-point and multi-cut point. For one-cut point, from
every chromosome is chosen a locus. They are cut in two
parts and every new chromosome will contain one part from
every parent. For crossover in multi-cut points, more than one
cutting point are chosen randomly and the resulting
chromosomes will contain information from each parent. For
this application, the crossover in one-cut point is used. After
the crossover, a function will eliminate loops from routes and
check if the new chromosomes are valid solutions. Just valid-
routes are selected after crossover.
In a genetic algorithm, mutation ensures that all of the solution
space will be taken into consideration to be searched and a
global solution will be generated by algorithm, not a local
solution. This operator generates random changes in
population and will replace the lost genes in selection process.
The mutation ratio is important. A low value for mutation value
will increase the probability to convergence in a local solution.
A high value for mutation probability will increase the time to
convergence and, because the difference between parents
generation and offspring generation will be too high, the
algorithm will not be able to learn from search history. Mutation
operator in this implementation will randomly replace
(according to the value from mutation probability) a number of
chromosomes from offspring population.
The termination criterion is in fact the convergence of
algorithm. Here, a minimum value for fitness value of next
generation (the sum of fitness function from all chromosomes
in next generation), combined with stall generation and with
small changes in population fitness means that the algorithm
found a set of solutions.
Experimental results
The implemented genetic algorithm use a one-point crossover
operator, the selection function based on fitness value and a
percent of 5% as mutation probability. The parent generation,
offspring generation, and next generation have the same
number of chromosomes (50 chromosomes per generation).
The termination criterion is a combination between minimum
sum of fitness functions for all chromosomes in next
generation, the small changes in population fitness and the
stall generation. The initial generation was randomly
generated. The network is randomly generated; it is a medium-
connected network and has 2000 nodes and 15000 links. The
cost per link is randomly generated, being between 1 and 10.
After 10 runs of the algorithm, using 10 different network
configurations and 10 different initial generations, these results
about convergence, fitness and solutions for routing problem
were obtained:

60

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

Running
number

Number of iterations
until convergence

Fitness for
solution

1 15 5
2 13 6
3 13 4
4 11 3
5 6 1
6 16 6
7 11 5
8 16 3
9 18 3
10 13 5

The running of a genetic algorithm on a network with high
number of nodes and links, as it can be seen in experimental
results, will generate in a relative low number of iterations a
set of solutions for routing problem. The result is not
necessary the minimum cost route, but a route with a good
cost, generated in timely manner. And, because of

construction, these kinds of algorithms are easy to fit on
dynamic network.
As future works, the algorithm can be implemented using
dedicated hardware devices, it can be implemented on parallel
machines or using a combination between genetic algorithm
and classic minimum route-search algorithms.
The generation of initial population can be modified, injecting a
number of some well-fitted chromosomes generated in anterior
runs of algorithms (the main idea is that, the evolution of a big
network is relatively constant and don’t present high
discontinuity points).

Conclusions
The self-adaptive property of a network will be a mandatory requirement for the future. With the opened technical possibilities that SDNs
are offering and the dynamical reconfiguration strategies controlled by a intelligent single point orchestrator, networks will provide
optimal services with minimal intervention. As Software Defined Networks are evolving, their controllers need to become more capable
and autonomous. By implementing solutions such as the Self Adaptive Evolutionary Network architecture into the SDN controllers, the
network can truly become more effective. On a wider scale, such optimizations have larger impacts such as lower energy requirement,
fail-save paths and automatic virtual networks.

Bibliography
[1] Maniu, Rares, L.A. Dumitru. "Self-adaptive networks with history extrapolation, evolutionary selection and realtime response."
Optimization of Electrical and Electronic Equipment (OPTIM), 2014 International Conference on. IEEE, 2014.
[2] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, pp. 69–74, 2008.
[3] Valdivieso Caraguay, Ángel Leonardo, et al. "SDN: Evolution and Opportunities in the Development IoT Applications." International
Journal of Distributed Sensor Networks 2014 (2014).
[4] Khondoker, Rahamatullah, et al. "Feature-based comparison and selection of Software Defined Networking (SDN)
controllers." Computer Applications and Information Systems (WCCAIS), 2014 World Congress on. IEEE, 2014.
[5] Arnab Raha, Mrinal Kanti Naskar, Et. Al. “A Genetic Algorithm Inspired Load Balancing Protocol for Congestion Control in Wireless
Sensor Networks using Trust Based Routing Framework (GACCTR)”, I. J. Computer Network and Information Security, 2013, 9, 9-20
[6] C.Y.Wan, S.B.Eisenman and A.T. Campbell, “CODA: Congestion Detection and Avoidance in Sensor Networks”, SenSys’ 03, Los
Angeles, USA, pp. 266-279, ACM, Nov 2003.
[7] Open Networking Foundation SDN Architecture Overview
[8] Fernandez, Marcial P. "Comparing openflow controller paradigms scalability: Reactive and proactive." Advanced Information
Networking and Applications (AINA), 2013 IEEE 27th International Conference on. IEEE, 2013.

61

