
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

LEVERAGING FPGAS AND SDNS FOR HIGH SPEED IPC IN HIGH PERFORMANCE COMPUTING
CLUSTERS

Laurentiu Alexandru DUMITRU1

1Eng., Ph.D. (c), Military Technical Academy, 39-49 George Cosbuc Bvd., Bucharest, Romania, dlaur@nipne.ro

Abstract. Many modern computing clusters have FPGA accelerators installed in their nodes. Apart from their specific purpose, these
cards could also be configured to communicate with the outside world by a network interface, given that one exists. The communication
structure of the cluster is, in most of the cases, a network to which nodes are connected. The migration toward the support of Software
Defined Networks in switch fabric, which is already visible in several large manufacturers, gives the opportunity to dynamically create
isolated networks between applications running on nodes inside the cluster. When parallel application are started on distinct physical
nodes, inter process communication, with all the implications, requires special attention from system administrators and programmers.
This paper explores the possibility of having an automated and transparent IPC method that is based on mapped memory, dynamically
synchronized across several processes that are bound to the same SDN.

Introduction
Current technologies have enabled both academic groups and
commercial entities to take advantage of multi-core processing
in condensed computing clusters to achieve high performance
computing (HPC) without the need of specialized hardware
and proprietary solutions. This development direction is clearly
visible in public and private clouds that are built around
commodity hardware. In research facilities, HPC is often
achieved with open source cluster software and COTS
hardware. One key element in such an environment is the
communication network to which all the nodes are connected
and which supports all forms of inter-node communication
protocols. However, specialized clusters have dedicated
accelerator cards installed in their nodes. Most of the times,
these accelerators come as Field Programmable Gate Array
(FPGA) cards. These cards usually connect via PCI Express
and, therefore, have a substantial amount of communication
bandwidth. Their main advantage is the possibility to be
reconfigured to accommodate a particular application. Such
installations can be seen in large clusters, as those
participating on the Worldwide LHC Computing Grid at CERN,
and, also in small, private ones.
Typical HPC applications often require parallelization. This
happens either locally, by exploiting the multi-core/multi-thread
architecture of the current host node or by distributing the
processes on different physical nodes. When all the processes
are contained within the same server, Inter Process
Communication (IPC) is achieved with the help of the specific
mechanisms of the Operating System (OS). On Unix-like
systems the most used include shared Memory Mapping
(mmap), Sockets and System V IPC. Memory mapping is the
most efficient way to share a large amount of memory between
processes. When processes are not on the same physical
node, extra work is needed in order to achieve a synchronized
and shared communication space. There are several
approaches, among which, the most transparent and easy to
implement is using a shared storage that all the nodes are
connected to. This assumes that the cluster is configured in
such a way that it permits this. Also by using this method, the
speed is usually bound to the storage element’s capabilities
and, the disk wear increases. Another approach is to
synchronize the data over the network, using sockets. This
requires the extra programming of a multi-client – multi-server
architecture and could induce other hidden catches such as
firewalls or segmented networks.
Software defined networks (SDNs) are a new concept of
communication networks in which the topology can be
changed dynamically, according to current needs. This is
achieved by decoupling the data plane from the control plane.
As opposed to traditional Ethernet network which do
destination-based forwarding at Layer 2, on the OSI 7 Level
communication model, SDNs do rule-based forwarding. The
control plane directs incoming traffic according to a
preconfigured policy. Network switches that participate in
SDNs must support the OpenFlow protocol. Each SDN has at
least a controller to which every switch is connected. It is the
controller’s responsibility to configure the flow tables on each
switch. OpenFlow runs on top of TCP and uses Transport
Layer Security (TLS) for data privacy. Since SDNs and

OpenFlow are relatively new technologies, not all vendors
support them. However, several large manufacturers have
started supporting these technologies. OpenFlow-capable
virtual switches already exist and are deployed in cloud stacks
such as OpenStack and CloudStack. Public implementations
exist on reconfigurable hardware [11].
When the network of a computing cluster provides support for
SDNs and nodes are equipped with FPGA accelerators, a new
inter-node IPC mechanism can be implemented. This assumes
that the FPGA cards have some form of external
communication that is understood by the edge switch (such as
Ethernet over copper or fiber optics) and have enough free
space to implement the communication cores required by this
method. This paper studies the concept of having virtual and
on-demand private networks that connect the distributed
processes, running on physical nodes inside a cluster, to them.
The goal is to achieve transparent data sharing by
synchronizing the memory mapped space of the processes
belonging to the same execution group. The main difference
from other approaches is a higher level of transparency
without the performance penalty. Even if the medium is a
network, the programmer does not need to think about any
type of client-server communication. This is resolved by the
underlying components. Since the networks are private –
physical and logical, there are no issues regarding firewalls,
routing or network related information. Communication is done
at Layer 2 because the topology is a direct point to multipoint
link where every node is directly interested in the data content.
An abstract view of the system is shown in Figure 1 and is
described, in detail, in chapter III.

Figure 1

Related work
The proposed solution contains a blend of both emerging and
production-grade concepts. The Remote Direct Memory
Access (RDMA) concept is at the base of the proposed
solution. In its current forms, RDMA, along with other specific
HPC interconnects, is only present in clusters with dedicated

319

mailto:dlaur@nipne.ro

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

hardware (e.g. Infiniband) and software. Among the main
disadvantages is the need for a distinct communication
network, the implementation price and required knowledge.
RDMA's role is to achieve transparent remote data transfer,
without CPU intervention. It would be a good candidate to
achieve intra-node IPC in a cluster, as the current paper
proposes. However, the needs for specific hardware for which
current software solutions are developed have lead to the
development of a similar solution that is discussed in the next
chapters. In particular cases [1], RDMA can be implemented
on top of the existing infrastructure. Still, the need for custom
software that is aware of the topology exists, which makes it
less transparent and more challenging to deploy on clusters
with dynamic topologies, such as clusters in a cloud
environment. A similar idea can be found in [2] where RDMA is
used to synchronize per-core local memories in multi-core
FPGAs.
The Joint Network Interface Controller [3] project is a
collaborative research project between HP and Intel to explore
high-performance in-data-center communications over
Ethernet. The study focuses on the real possibilities of
Ethernet as an alternative to specialized Myrinet [4], Quadrics
[5] and InfiniBand [6] networks to construct scalable compute
clusters. In the context of 10G networks becoming a common
internal interconnect in clusters and FPGAs being equipped
with transceivers capable of more than 10Gbit/s it should be
an advantage to combine these technologies to achieve what
is normally possible only with dedicated hardware.
Since the main goal is the synchronization of shared data on
distinct physical nodes, the process moving data from one
node to all of the other nodes in the same communication
group (CG) includes a user space - FPGA - network (and
reverse) transmission procedure. Locally, moving data to and
from user space and FPGA can be done in many ways.
RIFFA[7] provides communication and synchronization for
FPGA accelerated software using a standard interface. From a
programmer's point of view, normal read/write operation can
be done on a file and the date comes and goes directly from
and to the FPGA. The implementation includes scatter-gather
(SG) DMA with direct access to user space buffers. This
assures optimal performance when moving data. RIFFA was
developed as a transparent method of accessing particular IP
cores that are found on the card. Opposed to RIFFA's method,
the approach presented in the next chapters uses memory
mapped regions, which are more suitable of synchronization in
a parallel runtime environment due to the fact that the
shared/manipulated data is usually malloc()'ed.
Eguro K. proposed SIRC: An extensible reconfigurable
computing communication API [8] as a transparent host to
FPGA communication mechanism. Like RIFFA, it uses a
read/write method.
Although software defined networks (SDNs) have not yet
received mainstream implementation, their flexibility is a
fundamental characteristic for any dynamic cluster. The
network's switching logic resides in the SDN controller [10].
This has the capability to control the full routing path of a
certain packet/flow, from entry to exit. Switching is done by
OpenFlow-enabled physical and virtual switches.
Implmentations exist also in FPGA fabric [11]. The proposed
solution does not need to be OpenFlow-aware since it
connects to a SDN instead of contributing to the routing
process. The SDN controller is the head of the routing
decisions over the entire infrastructure. It can implement
normal mac/vlan-based switching and any other type of filters
like ip/tcp/udp header-based or static manual entries. It is also
possible to implement dynamic (re)configuration strategies
with the help of automated network observation, such as
proposed in SAEN [9]. With the help of SDNs, one can achieve
a transparent intra-node IPC when combined with FPGAs that
have network connections.
By combining RDMA, FPGAs and SDNs it is possible to
implement a new type of intra-node information sharing. This
approach is documented in the following chapters.
 Architecture

Figure 1 illustrates the high-level architecture. Each process is
part of an Execution Group (EG), which it must declare at
startup. Processes among the same EG are connected in the
same virtual network which is created on demand and
destroyed where there are no more members. Only one
process may write to a specific region of the shared memory.
Synchronization is done as in any other IPC environment.
When the process that holds the protected region releases the
lock, the shared region is distributed to all other processes,
achieving a consistent view across the whole execution group.
As the cluster in which the FS-IPC is deployed must be SDN-
capable, a SDN Controller must exist. The controller must be
capable of providing an Application Programming Interface
(API) through which it can be configured. This feature is
needed in order to dynamically configure the networks as the
processes enter and exit execution groups. Another useful API
call is the one to get the (shortest) path from A to B.
FloodLight[12] implements all this functionalities and runs out-
of-the box, without any configuration required. Without such a
function, the Software reconfiguration daemon, described
below, would be responsible for computing the shortest path.
The proof of concept implementation was done with this
controller.
The choice was made from the comparison of five controllers
[13]. When selecting the SDN controller for the test setup, the
main candidates were the most used ones: POX, Ryu, Trema,
FloodLight, and OpenDaylight.
The POX controller is the python-based evolution of NOX. It is
mainly used for SDN debugging, network virtualization and
controller design since it is very flexible.
Ryu is a component-based controller, supported by NTT. Its
predefined components can be extended in order to create a
custom controller. One advantage is the possibility to use any
programming language for new developments.
Trema is a scripted controller which uses Ruby. It is centred
around easy code and high performance.
OpenDaylight is an open source project under linux
distribution. The goal of the project is to create robust code
that covers most of the major components of the SDN
architecture, to gain acceptance among the vendors and
users, and to have a growing community that contributes to the
code and uses the code for commercial products.
The FloodLight controller is java-based, making it easy to run
on any operating system. It also exposes a simple but
sufficient REST API.
FS-IPC is implemented as point to multipoint link, without any
routing requirements. When an application commits the
memory to the execution group, the contents must arrive at all
nodes that are a part of the same EG. Each node in the cluster
is connected to a specific port in a SDN-capable switch. This
pair, switch-port, forms the source and destination identifier.
Based on their participation to execution groups, the SDN
must be capable of providing bidirectional communication.
Being a private multicast communication group, there is
actually no need for source/destination MAC. That space from
the Ethernet header can be used for internal communication
headers. When a node runs applications that are part of
several EGs, it must be registered in the SDN topology
accordingly.
The solution is composed from four different software
elements that sustain the whole process.
The SDN Reconfiguration Daemon (SRD) is a server daemon
that runs on the SDN controller and communicates with
daemons running on cluster nodes - the Node Configuration
Daemons (NCD). Its main operation can be summarized as:

320

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

Figure 2

The node configuration daemons connect to the SRD over the
standard network. Also, it connects to the SDN controller and
can query information and send reconfiguration request.
SRD’s main task is to keep track of applications participating in
EGs and to update the SDN rules in order to establish the
virtual shared network environment for these.
First, the NCD signals the SRD for joining/leaving an EG(1).
The SRD loops through every EG structure and retrieves the
participating ports in the form of a Cartesian product from
which it excludes pairs with identical elements. It then retrieves
the shortest path from Source to Destination with the help of
the SDN controller’s API. A rule is build to reflect the path, for
each pair. After computing the rules, it implements them to the
required SDN switches (2). From this point, the FPGAs are
connected to the same shared network (3). The result is a full
mesh of virtual circuits between nodes participating in the EG
(4). Each transmitted packet arrives at every node in the
network, in the same group. The task of separating incoming
packets according to execution groups and directing them to
appropriate memory regions falls into the Node Kernel Driver's
attributes. The daemon implements standard client-server
architecture. Internally, execution group information is stored
as:

EGS =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧E1 = �

SwitchId1 − Port1
…

SwitchIdX− Port Y
�

E2 = �
SwitchId1 − Port1

…
SwitchIdX − Port Y

�

… .

En = �
SwitchId1 − Port1

…
SwitchIdX− Port Y

�

�

The Node Kernel Driver (NKD) plays a critical role, since it is
responsible for transmitting and updating the shared memory
regions. It must differentiate the requests for different EGs and
configure the card to mark the transmissions accordingly. By
having access directly to the configuration space, it must
maintain consistent information about EGs that it receives.
Each EG has a particular application that requested it with a
specific memory region. Since the driver implements a
character device, the EG number is kept in the private_data
structure of the file pointer. The driver internally stores the dma
regions associated with a particular EG inside a structure.

struct eg {
 int eg,last_buf,last_page;

int requested_area_size;
 dma_addr_t hw_addr[NUM];
 void *buf_addr[NUM];
}

When mmap_open is called as a result of a userspace
request, the driver has already allocated n DMA memory
regions of size s, where n = requested_size / AXI-to-PCIe
translation length. The zones will be mapped as
DMA_TO_DEVICE when a TX signal is received and
DMA_FROM_DEVICE when data is inbound. In the first case,
the user application signals a transmission via an IOCTL
message. In case of receiving, the application is informed,
over a separate method, such as MPI, that it has data and
doesn't have to do anything. The data is already copied in its
memory by the FPGA logic. In this case, the driver is
responsible only with setting up the appropriate registers in the
FPGA card with the allocated memory regions.
When mmap_fault is called due to a memory access from
userspace, the driver is responsible for mapping the dma
zones to the application. Page translation is done with the
standard kernel function, virt_to_page. Also, a call to
get_page() is done in order to mark the page as being used.
The function will cycle through every pre-allocated zone and
map every page to the VM area of the calling userspace
process. Boundary check is mandatory since the requested
memory mapped region has a fixed size, announced to the
kernel module on application initialization. On exit, the driver
must free allocated resources and reconfigure the FPGA
control register to reflect the leaving from an EG.

Figure 3

The Node Configuration Daemon runs locally on every node.
Its main purpose is to receive information from the NKD and to
signal the SRD when an application joins or leaves an
execution group. An alternative to a local daemon is to link the
application against a library that performs the same task.
However, setting up a node-global application has several
advantages, as this can be also used for monitoring the node
and signaling the SRD. Furthermore, the programmer does not
need to modify the code in order to call specific library
functions. This way, existing applications do not need to know
about the lower transport level. When an application requests
joining an EG, after starting, the node kernel daemon (NKD)
registers its participation on that EG by adding it as an integer
element to the global EGS vector. Since the NCD is a
userspace application, it must periodically query the NKD to
get the required information. After the ioctl call that retrieves
the list, a message is sent to the SRD over TCP/UDP that
signals joining or leaving an execution group. A valid
communication path between the NCD and the SRD must
exist.
The FPGA logic is driven, in the prototype, by a Microblaze
soft processor. Summarized, a top-level view of the
architecture is presented in Fig. 4:

321

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

Figure 4

Implementation was done with two Xilinx boards, a Spartan 6
development kit and a Kintex kit, using the same logic. Since
all used IP cores are part of the standard Xilinx library, no
additional software costs exist. However, implementing a soft-
core is not a mandatory requirement. This was the approach
for concept validation. A production implementation should
include dedicated logic for optimal speed and minimum
resource usage. Apart from the softcore-related components,
the design includes: two axi interconnects, one axi pcie bridge,
one axi central dma controller (AXI CDMA), one axi dma (AXI
DMA) controller, one axi_ethernet component, one axi_gpio
and one fixed interval timer. The AXI bus connects the
onboard DDR memory, the PCIe Core and the CDMA core.
The CDMA is resonsible from host-initiated read/write
operations destinated to the configured BAR0 address. This
address space is used for configuration-related information
and event signaling. The DMA controller connects to the AXI
Stream interface of the Ethernet Core.
The AXI-Lite bus connects the PCIe Axi Slave interface, the
Ethernet Master Scatter Gather (SG) interface and the
Microblaze core. One AXI-Lite to AXI4 connector exists to
facilitate access from the softcore to both AXI4 space (needed
for DDR access) and AXI4-Lite space (needed for directly
modifying the Host DMA memory from the softcore, during the
testing phases).
Since the data transfer is done using SG-DMA, the softcore
does not need to access directly the host's DMA memory.
Therefore, in a production system, M_AXI_SG from the
Ethernet core should be connected to the S_AXI of the PCIe
core with a full AXI-4 bus, in order to benefit from transfer
bursts and other performance optimizations. A different clock
domain could also be used, in order to separate the existing
logic from the FSIPC logic. The FIT timer is used internally for
different counters. GPIO signals interrupt requests to the PCIe
core, which, in turn, signals the host for a MSI interrupt
request.
One important aspect of the PCIe core is that it must support
dynamic configuration of AXI Base Address Translation
Configuration Registers. This is needed due to the fact that the
DMA zones allocated by the host are not necessarily
contiguous and, the core can access only a specific memory
rage starting from a base address. By supporting dynamic
translation, the core’s starting PCIe address is reconfigured
when read/write is performed on a new DMA zone. These
registeres are configured by the NKD at load time. Also, BAR0
length must be the same size as required for DMA transfers.
When translated from PCIe to AXI, the BAR0 memory region
serves as a signaling and register zone. It is divided as follows:

Run
Flag

Current
EG

Num
DMA

DMA
Hw_addr1

.. DMA
addrN

The Run flag is used for TX signaling. When an application
issues a SYNC command, the NKD fills out the registers with
their appropriate values, sets TXSTART as the run flag and
waits for its change to TXDONE. The change is announced by

an interrupt from hardware. After the transmission is complete,
the flag is reset to IDLE. There is no need for an RX
mechanism since the receive side is done from the card and,
at the time when the application receives the signal that it can
access the data, the DMA zone are already filled with it. As the
Ethernet core starts to receive packets, it extracts the
execution group from the packet’s header. It then sets the
Runflag to RXINIT and issues an interrupt. The NKD reads the
Current EG from BAR0, fills out the DNS zones and sets the
flag to RXSTART. As the pages are received, they are written
to the appropriate DMA zones. Given this execution delay, if
the Ethernet core does not have enough buffer space to hold
the incoming frames, these can be saved in the local DDR
memory and transferred at the end to the host memory. One
alternative is that the sending core to begin with a
configuration frame that has no content but contains the
execution group. When received, pages are written in the
incoming order. The system could be extended to support
synchronization of specific memory areas inside the shared
space. This would imply adding extra fields in the packet
headers that indicate a starting offset inside the memory space
and a number of pages to be written.
 Test results and further optimizations
The tests were carried out in a controlled environment
consisting of two nodes with FPGA cards, one node that is
also a part of the SDN execution group and one controlling
node. The Open vSwitch is hosted on a system with multiple
network cards that are jumbo frame capable. Both nodes were
based on Intel Core 2 Duo Processors, 4GB of RAM and
CentOs Linux 7 running with 3.10 kernel. Speed measuring on
the network was done with libpcap. Wireshark was used for
traffic analysis on the monitoring node. In-kernel timing was
done with the do_gettimeofday API call. Overall, the transfers
to and from the FPGA worked as excepted and the tests have
validates the proposed FPGA-SDN interprocess
communication solution. Although specialized solutions
perform better in certain cases, the proposed no-cost
alternative for clusters that already have the required hardware
can be, at least, a concept validation solution.

Figure 5

The majority of the network switches are jumbo frame capable,
with sizes up to 9KB per frame. Given that, on most of the
server operating systems, the page size is 4KB. One packet
can contain the control header and two pages of memory. This
approach lowers the interrupt frequency, reducing CPU usage,
but, increases the RX buffer size due to the large frame length.
The AXI bus was configured with 32bit data width. FIFOs on
transmit for MemoryMap2Slave interface and/or receive for
Slave2MemoryMap interface were not used due to the fact that
routing did not succeed on the Spartan board. The maximum
allowed frequency for the SP605 board is 62.5MHz, limitation
given by the PCIe core. The test board was actually ran at
50MHz, giving a maximum theoretical bandwidth of 1.6 Gbit/s
instead of 2Gbit/s for PCIe 1.0 (2.5GT/s). It is enough to
saturate the network link.

322

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

After the test setup has validated the correct functionality of
the system, further optimization – in both speed and area
terms – is the next step. According to official vendor
documentation, resource utilization for the components is:

 LUT Slice BRAM

DMA Kintex 3125 1418 2
SP605 2934 1128 4

Ethernet Kintex 4770 2247 26
SP605 4877 2398 44

Depending of the selected setup, MicroBlaze can occupy from
1000 to more than 3000 LUTs. Since the majority of the
accelerator cards use specially designed cores, it is highly
unlikely that there will be a softcore present on a FPGA card
installed on a server. In the test setup, the softcore was used
solely as a control mechanism. It should be replaced with the
appropriate FSM that will free up resources and speed up the
system. As discussed in Chapter III, the Ethernet's DMA SG
engine was connected using AXI4 instead of AXI4Lite to the
PCIe Slave Bridge, for full performance. On the host system,
each DMA zone was 4MB long. The test was carried out on a
128MB zone, summing up 32 smaller zones. A larger zone
was used due to the fact that the PCIe core must be
dynamically reconfigured to access a certain memory region
from the host system. If, for example, 128Kb zones were used,
then 1024 reconfigurations were needed to access the whole
memory – as opposed to only 32 for 4MB zone. After each
reconfiguration, the buffers need to be reconfigured and
transmission restarted on the Ethernet core. Since the clock is
only 50MHz, the test system used the maximum DMA zone
size on Linux, which is PAGE_SIZE* 2^10 = 4MB, to achieve
higher throughput.
Each buffer descriptor on the FPGA core is 64KB. The SG
engine allows frame composition from multiple buffer
descriptors. Tests were done using 256 descriptors that were
dynamically allocated and freed as long as there was data to
transmit. Since the host kernel driver only maps pages, the
header is generated on the FPGA. Each frame is composed of
two buffer descriptors: one that signals the SOF (Start of
Frame) and points to the header, inside the FPGA memory
range and another one that signals EOF (End of Frame) and
points to the actual data on the PCIe memory space. This

method allows direct copy to/from the DMA zone, without the
need of an intermediary copy for frame composition.
From the tests summarized in Fig. 6, the best results were, as
expected, with the largest payload. As the payload size
decreases, more packets are needed to complete the transfer.
Being in SG mode, each transmission round requires clearing
and reconfiguring the buffer descriptors. This translates in
CPU cycles used by the Microblaze and subsequent
components. Therefore, the throughput decreases with the
payload size.

Figure 6

The proposed architecture for the FPGA cores will be different,
according to the hardware used and implementations needs.
Nevertheless, optimization strategies should be considered,
regardless of the device.
In terms of speed, the system can be redesigned to include a
separate clock domain for the PCIe core that restricts the AXI
clock to 62.5MHz for the SP605 board. Instead of a memory
mapped PCIe bridge, an AXI4-Stream based implementation
can be used. The Ethernet’s DMA engine would no longer be
needed. Instead a multiplexer for the incoming streams that
will ensure connectivity between the custom accelerator cores
and the Ethernet core will have to be instantiated. Also, with
this approach, the header building stage will reside into the
kernel code.

Conclusion
The proposed solution for intra-node data sharing in a cluster is feasible as a concept, given that the cluster is SDN ready and at least
some of the computing nodes have FPGA accelerators. Leveraging existing hardware in order to optimize the computing architecture
inside a cluster which mostly runs applications that require parallelization should be taken into account by both cluster administrators
and application programmers. Since the solution only extends transparently from node-local to intra-node, the fundamental problems
and solutions for parallel applications are the same. From the runtime point of view, it is safe to compare N nodes that participate in the
same execution group with one big node with M cores. Inherently the applications must implement the same synchronization, run order
and access control procedures as they would in a single server with multiple computing cores. The obvious advantage is the transparent
scaling capability.
If technologies will continue to develop towards the abstractization of the underlying hardware, it is possible to envision a runtime
environment in which normal applications will use memory, file descriptors and even system calls across multiple nodes (physical or
virtual), without particular programming requirements. The solution proposed in this paper takes a step into such a scenario, a scenario
in which new types of computing clouds could emerge.

Bibliography
[1] Oberg, Michael, et al. "Evaluation of rdma over ethernet technology for building cost effective linux clusters." 7th LCI International
Conference on Linux Clusters: The HPC Revolution. 2006.
[2] Kachris, Christoforos, et al. "Network processing in multi-core FPGAs with integrated cache-network interface." Reconfigurable
Computing and FPGAs (ReConFig), 2010 International Conference on. IEEE, 2010.
[3] Schlansker, Michael, et al. "High-performance ethernet-based communications for future multi-core processors. Proceedings of the
2007 ACM/IEEE conference on Supercomputing. ACM, 2007.
[4] N. J. Boden, et. Al.. "Myrinet: A gigabit-per-second localarea network." IEEE Micro, vol. 15, no. 1, pp. 29-36.
[5] F. Petrini, et. al. “The Quadrics Network: High Performance Clustering Technology”, IEEE Micro, Feb. 2002, pp. 46-57.
[6] J. Liu, et. al. “High Performance RDMA-Based MPI Implementation over Infiniband”, Proceedings of the 17th Annual Conference on
Supercomputing, June 2004, pp. 295-304.
[7] Jacobsen, Matthew, and Ryan Kastner. "RIFFA 2.0: A reusable integration framework for FPGA accelerators." Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on. IEEE, 2013

323

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

[8] Eguro, Ken. "SIRC: An extensible reconfigurable computing communication API." Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium on. IEEE, 2010.
[9] Maniu, Rares, L.A. Dumitru. "Self-adaptive networks with history extrapolation, evolutionary selection and realtime response."
Optimization of Electrical and Electronic Equipment (OPTIM), 2014 International Conference on. IEEE, 2014.
[10] Shah, Syed Abdullah, et al. "An architectural evaluation of SDN controllers." Communications (ICC), 2013 IEEE International
Conference on. IEEE, 2013.
[11] Naous, Jad, et al. "Implementing an OpenFlow switch on the NetFPGA platform." Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems. ACM, 2008.
[12] Fernandez, Marcial P. "Comparing openflow controller paradigms scalability: Reactive and proactive." Advanced Information [13]
[13] Networking and Applications (AINA), 2013 IEEE 27th International Conference on. IEEE, 2013.
Khondoker, Rahamatullah, et al. "Feature-based comparison and selection of Software Defined Networking (SDN)
controllers." Computer Applications and Information Systems (WCCAIS), 2014 World Congress on. IEEE, 2014.

324

