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Abstract. Many modern computing clusters have FPGA accelerators installed in their nodes. Apart from their specific purpose, these 
cards could also be configured to communicate with the outside world by a network interface, given that one exists. The communication 
structure of the cluster is, in most of the cases, a network to which nodes are connected. The migration toward the support of Software 
Defined Networks in switch fabric, which is already visible in several large manufacturers, gives the opportunity to dynamically create 
isolated networks between applications running on nodes inside the cluster. When parallel application are started on distinct physical 
nodes, inter process communication, with all the implications, requires special attention from system administrators and programmers. 
This paper explores the possibility of having an automated and transparent IPC method that is based on mapped memory, dynamically 
synchronized across several processes that are bound to the same SDN. 
 
Introduction 
Current technologies have enabled both academic groups and 
commercial entities to take advantage of multi-core processing 
in condensed computing clusters to achieve high performance 
computing (HPC) without the need of specialized hardware 
and proprietary solutions. This development direction is clearly 
visible in public and private clouds that are built around 
commodity hardware. In research facilities, HPC is often 
achieved with open source cluster software and COTS 
hardware. One key element in such an environment is the 
communication network to which all the nodes are connected 
and which supports all forms of inter-node communication 
protocols. However, specialized clusters have dedicated 
accelerator cards installed in their nodes. Most of the times, 
these accelerators come as Field Programmable Gate Array 
(FPGA) cards. These cards usually connect via PCI Express 
and, therefore, have a substantial amount of communication 
bandwidth. Their main advantage is the possibility to be 
reconfigured to accommodate a particular application. Such 
installations can be seen in large clusters, as those 
participating on the Worldwide LHC Computing Grid at CERN, 
and, also in small, private ones.  
Typical HPC applications often require parallelization. This 
happens either locally, by exploiting the multi-core/multi-thread 
architecture of the current host node or by distributing the 
processes on different physical nodes. When all the processes 
are contained within the same server, Inter Process 
Communication (IPC) is achieved with the help of the specific 
mechanisms of the Operating System (OS). On Unix-like 
systems the most used include shared Memory Mapping 
(mmap), Sockets and System V IPC. Memory mapping is the 
most efficient way to share a large amount of memory between 
processes. When processes are not on the same physical 
node, extra work is needed in order to achieve a synchronized 
and shared communication space. There are several 
approaches, among which, the most transparent and easy to 
implement is using a shared storage that all the nodes are 
connected to. This assumes that the cluster is configured in 
such a way that it permits this. Also by using this method, the 
speed is usually bound to the storage element’s capabilities 
and, the disk wear increases. Another approach is to 
synchronize the data over the network, using sockets. This 
requires the extra programming of a multi-client – multi-server 
architecture and could induce other hidden catches such as 
firewalls or segmented networks. 
Software defined networks (SDNs) are a new concept of 
communication networks in which the topology can be 
changed dynamically, according to current needs. This is 
achieved by decoupling the data plane from the control plane. 
As opposed to traditional Ethernet network which do 
destination-based forwarding at Layer 2, on the OSI 7 Level 
communication model, SDNs do rule-based forwarding. The 
control plane directs incoming traffic according to a 
preconfigured policy. Network switches that participate in 
SDNs must support the OpenFlow protocol. Each SDN has at 
least a controller to which every switch is connected. It is the 
controller’s responsibility to configure the flow tables on each 
switch. OpenFlow runs on top of TCP and uses Transport 
Layer Security (TLS) for data privacy. Since SDNs and 

OpenFlow are relatively new technologies, not all vendors 
support them. However, several large manufacturers have 
started supporting these technologies. OpenFlow-capable 
virtual switches already exist and are deployed in cloud stacks 
such as OpenStack and CloudStack. Public implementations 
exist on reconfigurable hardware [11]. 
When the network of a computing cluster provides support for 
SDNs and nodes are equipped with FPGA accelerators, a new 
inter-node IPC mechanism can be implemented. This assumes 
that the FPGA cards have some form of external 
communication that is understood by the edge switch (such as 
Ethernet over copper or fiber optics) and have enough free 
space to implement the communication cores required by this 
method. This paper studies the concept of having virtual and 
on-demand private networks that connect the distributed 
processes, running on physical nodes inside a cluster, to them. 
The goal is to achieve transparent data sharing by 
synchronizing the memory mapped space of the processes 
belonging to the same execution group. The main difference 
from other approaches is a higher level of transparency 
without the performance penalty. Even if the medium is a 
network, the programmer does not need to think about any 
type of client-server communication. This is resolved by the 
underlying components. Since the networks are private – 
physical and logical, there are no issues regarding firewalls, 
routing or network related information. Communication is done 
at Layer 2 because the topology is a direct point to multipoint 
link where every node is directly interested in the data content. 
An abstract view of the system is shown in Figure 1 and is 
described, in detail, in chapter III. 

 

 
Figure 1 

 
Related work 
The proposed solution contains a blend of both emerging and 
production-grade concepts. The Remote Direct Memory 
Access (RDMA) concept is at the base of the proposed 
solution. In its current forms, RDMA, along with other specific 
HPC interconnects, is only present in clusters with dedicated 
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hardware (e.g. Infiniband) and software. Among the main 
disadvantages is the need for a distinct communication 
network, the implementation price and required knowledge. 
RDMA's role is to achieve transparent remote data transfer, 
without CPU intervention. It would be a good candidate to 
achieve intra-node IPC in a cluster, as the current paper 
proposes. However, the needs for specific hardware for which 
current software solutions are developed have lead to the 
development of a similar solution that is discussed in the next 
chapters. In particular cases [1], RDMA can be implemented 
on top of the existing infrastructure. Still, the need for custom 
software that is aware of the topology exists, which makes it 
less transparent and more challenging to deploy on clusters 
with dynamic topologies, such as clusters in a cloud 
environment. A similar idea can be found in [2] where RDMA is 
used to synchronize per-core local memories in multi-core 
FPGAs. 
The Joint Network Interface Controller [3] project is a 
collaborative research project between HP and Intel to explore 
high-performance in-data-center communications over 
Ethernet. The study focuses on the real possibilities of 
Ethernet as an alternative to specialized Myrinet [4], Quadrics 
[5] and InfiniBand [6] networks to construct scalable compute 
clusters. In the context of 10G networks becoming a common 
internal interconnect in clusters and FPGAs being equipped 
with transceivers capable of more than 10Gbit/s it should be 
an advantage to combine these technologies to achieve what 
is normally possible only with dedicated hardware. 
Since the main goal is the synchronization of shared data on 
distinct physical nodes, the process moving data from one 
node to all of the other nodes in the same communication 
group (CG) includes a user space - FPGA - network (and 
reverse) transmission procedure. Locally, moving data to and 
from user space and FPGA can be done in many ways. 
RIFFA[7] provides communication and synchronization for 
FPGA accelerated software using a standard interface. From a 
programmer's point of view, normal read/write operation can 
be done on a file and the date comes and goes directly from 
and to the FPGA. The implementation includes scatter-gather 
(SG) DMA with direct access to user space buffers. This 
assures optimal performance when moving data. RIFFA was 
developed as a transparent method of accessing particular IP 
cores that are found on the card. Opposed to RIFFA's method, 
the approach presented in the next chapters uses memory 
mapped regions, which are more suitable of synchronization in 
a parallel runtime environment due to the fact that the 
shared/manipulated data is usually malloc()'ed. 
Eguro K. proposed SIRC: An extensible reconfigurable 
computing communication API [8] as a transparent host to 
FPGA communication mechanism. Like RIFFA, it uses a 
read/write method.  
Although software defined networks (SDNs) have not yet 
received mainstream implementation, their flexibility is a 
fundamental characteristic for any dynamic cluster. The 
network's switching logic resides in the SDN controller [10]. 
This has the capability to control the full routing path of a 
certain packet/flow, from entry to exit. Switching is done by 
OpenFlow-enabled physical and virtual switches. 
Implmentations exist also in FPGA fabric [11]. The proposed 
solution does not need to be OpenFlow-aware since it 
connects to a SDN instead of contributing to the routing 
process. The SDN controller is the head of the routing 
decisions over the entire infrastructure. It can implement 
normal mac/vlan-based switching and any other type of filters 
like ip/tcp/udp header-based or static manual entries. It is also 
possible to implement dynamic (re)configuration strategies 
with the help of automated network observation, such as 
proposed in SAEN [9]. With the help of SDNs, one can achieve 
a transparent intra-node IPC when combined with FPGAs that 
have network connections.  
By combining RDMA, FPGAs and SDNs it is possible to 
implement a new type of intra-node information sharing. This 
approach is documented in the following chapters. 
 Architecture 

Figure 1 illustrates the high-level architecture. Each process is 
part of an Execution Group (EG), which it must declare at 
startup. Processes among the same EG are connected in the 
same virtual network which is created on demand and 
destroyed where there are no more members.  Only one 
process may write to a specific region of the shared memory. 
Synchronization is done as in any other IPC environment. 
When the process that holds the protected region releases the 
lock, the shared region is distributed to all other processes, 
achieving a consistent view across the whole execution group. 
As the cluster in which the FS-IPC is deployed must be SDN-
capable, a SDN Controller must exist. The controller must be 
capable of providing an Application Programming Interface 
(API) through which it can be configured. This feature is 
needed in order to dynamically configure the networks as the 
processes enter and exit execution groups. Another useful API 
call is the one to get the (shortest) path from A to B. 
FloodLight[12] implements all this functionalities and runs out-
of-the box, without any configuration required. Without such a 
function, the Software reconfiguration daemon, described 
below, would be responsible for computing the shortest path. 
The proof of concept implementation was done with this 
controller. 
The choice was made from the comparison of five controllers 
[13]. When selecting the SDN controller for the test setup, the 
main candidates were the most used ones: POX, Ryu, Trema, 
FloodLight, and OpenDaylight.  
The POX controller is the python-based evolution of NOX. It is 
mainly used for SDN debugging, network virtualization and 
controller design since it is very flexible.  
Ryu is a component-based controller, supported by NTT. Its 
predefined components can be extended in order to create a 
custom controller. One advantage is the possibility to use any 
programming language for new developments.  
Trema is a scripted controller which uses Ruby. It is centred 
around easy code and high performance. 
OpenDaylight is an open source project under linux 
distribution. The goal of the project is to create robust code 
that covers most of the major components of the SDN 
architecture, to gain acceptance among the vendors and 
users, and to have a growing community that contributes to the 
code and uses the code for commercial products. 
The FloodLight controller is java-based, making it easy to run 
on any operating system. It also exposes a simple but 
sufficient REST API. 
FS-IPC is implemented as point to multipoint link, without any 
routing requirements. When an application commits the 
memory to the execution group, the contents must arrive at all 
nodes that are a part of the same EG. Each node in the cluster 
is connected to a specific port in a SDN-capable switch. This 
pair, switch-port, forms the source and destination identifier. 
Based on their participation to execution groups, the SDN 
must be capable of providing bidirectional communication. 
Being a private multicast communication group, there is 
actually no need for source/destination MAC. That space from 
the Ethernet header can be used for internal communication 
headers. When a node runs applications that are part of 
several EGs, it must be registered in the SDN topology 
accordingly.  
The solution is composed from four different software 
elements that sustain the whole process. 
The SDN Reconfiguration Daemon (SRD) is a server daemon 
that runs on the SDN controller and communicates with 
daemons running on cluster nodes - the Node Configuration 
Daemons (NCD).  Its main operation can be summarized as: 
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Figure 2 

The node configuration daemons connect to the SRD over the 
standard network. Also, it connects to the SDN controller and 
can query information and send reconfiguration request. 
SRD’s main task is to keep track of applications participating in 
EGs and to update the SDN rules in order to establish the 
virtual shared network environment for these.  
First, the NCD signals the SRD for joining/leaving an EG(1). 
The SRD loops through every EG structure and retrieves the 
participating ports in the form of a Cartesian product from 
which it excludes pairs with identical elements. It then retrieves 
the shortest path from Source to Destination with the help of 
the SDN controller’s API. A rule is build to reflect the path, for 
each pair. After computing the rules, it implements them to the 
required SDN switches (2). From this point, the FPGAs are 
connected to the same shared network (3). The result is a full 
mesh of virtual circuits between nodes participating in the EG 
(4). Each transmitted packet arrives at every node in the 
network, in the same group. The task of separating incoming 
packets according to execution groups and directing them to 
appropriate memory regions falls into the Node Kernel Driver's 
attributes. The daemon implements standard client-server 
architecture. Internally, execution group information is stored 
as: 
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The Node Kernel Driver (NKD) plays a critical role, since it is 
responsible for transmitting and updating the shared memory 
regions. It must differentiate the requests for different EGs and 
configure the card to mark the transmissions accordingly. By 
having access directly to the configuration space, it must 
maintain consistent information about EGs that it receives. 
Each EG has a particular application that requested it with a 
specific memory region. Since the driver implements a 
character device, the EG number is kept in the private_data 
structure of the file pointer. The driver internally stores the dma 
regions associated with a particular EG inside a structure. 

struct eg { 
 int eg,last_buf,last_page; 

int requested_area_size; 
 dma_addr_t hw_addr[NUM]; 
 void *buf_addr[NUM]; 
} 

 
When mmap_open is called as a result of a userspace 
request, the driver has already allocated n DMA memory 
regions of size s, where n = requested_size / AXI-to-PCIe 
translation length. The zones will be mapped as 
DMA_TO_DEVICE when a TX signal is received and 
DMA_FROM_DEVICE when data is inbound. In the first case, 
the user application signals a transmission via an IOCTL 
message. In case of receiving, the application is informed, 
over a separate method, such as MPI, that it has data and 
doesn't have to do anything. The data is already copied in its 
memory by the FPGA logic. In this case, the driver is 
responsible only with setting up the appropriate registers in the 
FPGA card with the allocated memory regions. 
When mmap_fault is called due to a memory access from 
userspace, the driver is responsible for mapping the dma 
zones to the application. Page translation is done with the 
standard kernel function, virt_to_page. Also, a call to 
get_page() is done in order to mark the page as being used. 
The function will cycle through every pre-allocated zone and 
map every page to the VM area of the calling userspace 
process. Boundary check is mandatory since the requested 
memory mapped region has a fixed size, announced to the 
kernel module on application initialization. On exit, the driver 
must free allocated resources and reconfigure the FPGA 
control register to reflect the leaving from an EG.  

 

 
Figure 3 

 
The Node Configuration Daemon runs locally on every node. 
Its main purpose is to receive information from the NKD and to 
signal the SRD when an application joins or leaves an 
execution group. An alternative to a local daemon is to link the 
application against a library that performs the same task. 
However, setting up a node-global application has several 
advantages, as this can be also used for monitoring the node 
and signaling the SRD. Furthermore, the programmer does not 
need to modify the code in order to call specific library 
functions. This way, existing applications do not need to know 
about the lower transport level. When an application requests 
joining an EG, after starting, the node kernel daemon (NKD) 
registers its participation on that EG by adding it as an integer 
element to the global EGS vector. Since the NCD is a 
userspace application, it must periodically query the NKD to 
get the required information. After the ioctl call that retrieves 
the list, a message is sent to the SRD over TCP/UDP that 
signals joining or leaving an execution group. A valid 
communication path between the NCD and the SRD must 
exist. 
The FPGA logic is driven, in the prototype, by a Microblaze 
soft processor. Summarized, a top-level view of the 
architecture is presented in Fig. 4: 

 

321 
 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1 
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:   

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology 
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace 

 
Figure 4 

 
Implementation was done with two Xilinx boards, a Spartan 6 
development kit and a Kintex kit, using the same logic. Since 
all used IP cores are part of the standard Xilinx library, no 
additional software costs exist. However, implementing a soft-
core is not a mandatory requirement. This was the approach 
for concept validation. A production implementation should 
include dedicated logic for optimal speed and minimum 
resource usage. Apart from the softcore-related components, 
the design includes: two axi interconnects, one axi pcie bridge, 
one axi central dma  controller (AXI CDMA), one axi dma (AXI 
DMA) controller, one axi_ethernet component, one axi_gpio 
and one fixed interval timer. The AXI bus connects the 
onboard DDR memory, the PCIe Core and the CDMA core. 
The CDMA is resonsible from host-initiated read/write 
operations destinated to the configured BAR0 address. This 
address space is used for configuration-related information 
and event signaling. The DMA controller connects to the AXI 
Stream interface of the Ethernet Core.  
The AXI-Lite bus connects the PCIe Axi Slave interface, the 
Ethernet Master Scatter Gather (SG) interface and the 
Microblaze core. One AXI-Lite to AXI4 connector exists to 
facilitate access from the softcore to both AXI4 space (needed 
for DDR access) and AXI4-Lite space (needed for directly 
modifying the Host DMA memory from the softcore, during the 
testing phases).  
Since the data transfer is done using SG-DMA, the softcore 
does not need to access directly the host's DMA memory. 
Therefore, in a production system, M_AXI_SG from the 
Ethernet core should be connected to the S_AXI of the PCIe 
core with a full AXI-4 bus, in order to benefit from transfer 
bursts and other performance optimizations. A different clock 
domain could also be used, in order to separate the existing 
logic from the FSIPC logic. The FIT timer is used internally for 
different counters. GPIO signals interrupt requests to the PCIe 
core, which, in turn, signals the host for a MSI interrupt 
request. 
One important aspect of the PCIe core is that it must support 
dynamic configuration of AXI Base Address Translation 
Configuration Registers. This is needed due to the fact that the 
DMA zones allocated by the host are not necessarily 
contiguous and, the core can access only a specific memory 
rage starting from a base address. By supporting dynamic 
translation, the core’s starting PCIe address is reconfigured 
when read/write is performed on a new DMA zone. These 
registeres are configured by the NKD at load time. Also, BAR0 
length must be the same size as required for DMA transfers. 
When translated from PCIe to AXI, the BAR0 memory region 
serves as a signaling and register zone. It is divided as follows: 

 
Run 
Flag 

Current 
EG 

Num 
DMA 

DMA 
Hw_addr1 

.. DMA 
addrN 

 
The Run flag is used for TX signaling. When an application 
issues a SYNC command, the NKD fills out the registers with 
their appropriate values, sets TXSTART as the run flag and 
waits for its change to TXDONE. The change is announced by 

an interrupt from hardware. After the transmission is complete, 
the flag is reset to IDLE.  There is no need for an RX 
mechanism since the receive side is done from the card and, 
at the time when the application receives the signal that it can 
access the data, the DMA zone are already filled with it. As the 
Ethernet core starts to receive packets, it extracts the 
execution group from the packet’s header. It then sets the 
Runflag to RXINIT and issues an interrupt. The NKD reads the 
Current EG from BAR0, fills out the DNS zones and sets the 
flag to RXSTART.  As the pages are received, they are written 
to the appropriate DMA zones. Given this execution delay, if 
the Ethernet core does not have enough buffer space to hold 
the incoming frames, these can be saved in the local DDR 
memory and transferred at the end to the host memory. One 
alternative is that the sending core to begin with a 
configuration frame that has no content but contains the 
execution group. When received, pages are written in the 
incoming order. The system could be extended to support 
synchronization of specific memory areas inside the shared 
space. This would imply adding extra fields in the packet 
headers that indicate a starting offset inside the memory space 
and a number of pages to be written. 
 Test results and further optimizations 
The tests were carried out in a controlled environment 
consisting of two nodes with FPGA cards, one node that is 
also a part of the SDN execution group and one controlling 
node. The Open vSwitch is hosted on a system with multiple 
network cards that are jumbo frame capable. Both nodes were 
based on Intel Core 2 Duo Processors, 4GB of RAM and 
CentOs Linux 7 running with 3.10 kernel. Speed measuring on 
the network was done with libpcap. Wireshark was used for 
traffic analysis on the monitoring node. In-kernel timing was 
done with the do_gettimeofday API call. Overall, the transfers 
to and from the FPGA worked as excepted and the tests have 
validates the proposed FPGA-SDN interprocess 
communication solution. Although specialized solutions 
perform better in certain cases, the proposed no-cost 
alternative for clusters that already have the required hardware 
can be, at least, a concept validation solution. 

 

 
Figure 5 

 
The majority of the network switches are jumbo frame capable, 
with sizes up to 9KB per frame. Given that, on most of the 
server operating systems, the page size is 4KB. One packet 
can contain the control header and two pages of memory. This 
approach lowers the interrupt frequency, reducing CPU usage, 
but, increases the RX buffer size due to the large frame length.  
The AXI bus was configured with 32bit data width. FIFOs on 
transmit for MemoryMap2Slave interface and/or receive for 
Slave2MemoryMap interface were not used due to the fact that 
routing did not succeed on the Spartan board. The maximum 
allowed frequency for the SP605 board is 62.5MHz, limitation 
given by the PCIe core. The test board was actually ran at 
50MHz, giving a maximum theoretical bandwidth of 1.6 Gbit/s 
instead of 2Gbit/s for PCIe 1.0 (2.5GT/s). It is enough to 
saturate the network link. 
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After the test setup has validated the correct functionality of 
the system, further optimization – in both speed and area 
terms – is the next step. According to official vendor 
documentation, resource utilization for the components is: 

 

 LUT Slice BRAM 

DMA Kintex 3125 1418 2 
SP605 2934 1128 4 

Ethernet Kintex 4770 2247 26 
SP605 4877 2398 44 

 
Depending of the selected setup, MicroBlaze can occupy from 
1000 to more than 3000 LUTs. Since the majority of the 
accelerator cards use specially designed cores, it is highly 
unlikely that there will be a softcore present on a FPGA card 
installed on a server. In the test setup, the softcore was used 
solely as a control mechanism. It should be replaced with the 
appropriate FSM that will free up resources and speed up the 
system. As discussed in Chapter III, the Ethernet's DMA SG 
engine was connected using AXI4 instead of AXI4Lite to the 
PCIe Slave Bridge, for full performance. On the host system, 
each DMA zone was 4MB long. The test was carried out on a 
128MB zone, summing up 32 smaller zones. A larger zone 
was used due to the fact that the PCIe core must be 
dynamically reconfigured to access a certain memory region 
from the host system. If, for example, 128Kb zones were used, 
then 1024 reconfigurations were needed to access the whole 
memory – as opposed to only 32 for 4MB zone. After each 
reconfiguration, the buffers need to be reconfigured and 
transmission restarted on the Ethernet core. Since the clock is 
only 50MHz, the test system used the maximum DMA zone 
size on Linux, which is PAGE_SIZE* 2^10 = 4MB, to achieve 
higher throughput. 
Each buffer descriptor on the FPGA core is 64KB. The SG 
engine allows frame composition from multiple buffer 
descriptors. Tests were done using 256 descriptors that were 
dynamically allocated and freed as long as there was data to 
transmit. Since the host kernel driver only maps pages, the 
header is generated on the FPGA. Each frame is composed of 
two buffer descriptors: one that signals the SOF (Start of 
Frame)  and points to the header, inside the FPGA memory 
range and another one that signals EOF (End of Frame) and 
points to the actual data on the PCIe memory space. This 

method allows direct copy to/from the DMA zone, without the 
need of an intermediary copy for frame composition. 
From the tests summarized in Fig. 6, the best results were, as 
expected, with the largest payload. As the payload size 
decreases, more packets are needed to complete the transfer. 
Being in SG mode, each transmission round requires clearing 
and reconfiguring the buffer descriptors. This translates in 
CPU cycles used by the Microblaze and subsequent 
components. Therefore, the throughput decreases with the 
payload size.  

 
Figure 6 

  
The proposed architecture for the FPGA cores will be different, 
according to the hardware used and implementations needs. 
Nevertheless, optimization strategies should be considered, 
regardless of the device. 
In terms of speed, the system can be redesigned to include a 
separate clock domain for the PCIe core that restricts the AXI 
clock to 62.5MHz for the SP605 board. Instead of a memory 
mapped PCIe bridge, an AXI4-Stream based implementation 
can be used. The Ethernet’s DMA engine would no longer be 
needed. Instead a multiplexer for the incoming streams that 
will ensure connectivity between the custom accelerator cores 
and the Ethernet core will have to be instantiated. Also, with 
this approach, the header building stage will reside into the 
kernel code. 

 

 
Conclusion 
The proposed solution for intra-node data sharing in a cluster is feasible as a concept, given that the cluster is SDN ready and at least 
some of the computing nodes have FPGA accelerators. Leveraging existing hardware in order to optimize the computing architecture 
inside a cluster which mostly runs applications that require parallelization should be taken into account by both cluster administrators 
and application programmers. Since the solution only extends transparently from node-local to intra-node, the fundamental problems 
and solutions for parallel applications are the same. From the runtime point of view, it is safe to compare N nodes that participate in the 
same execution group with one big node with M cores. Inherently the applications must implement the same synchronization, run order 
and access control procedures as they would in a single server with multiple computing cores. The obvious advantage is the transparent 
scaling capability. 
If technologies will continue to develop towards the abstractization of the underlying hardware, it is possible to envision a runtime 
environment in which normal applications will use memory, file descriptors and even system calls across multiple nodes (physical or 
virtual), without particular programming requirements. The solution proposed in this paper takes a step into such a scenario, a scenario 
in which new types of computing clouds could emerge. 

 
Bibliography  
[1] Oberg, Michael, et al. "Evaluation of rdma over ethernet technology for building cost effective linux clusters." 7th LCI International 
Conference on Linux Clusters: The HPC Revolution. 2006. 
[2] Kachris, Christoforos, et al. "Network processing in multi-core FPGAs with integrated cache-network interface." Reconfigurable 
Computing and FPGAs (ReConFig), 2010 International Conference on. IEEE, 2010. 
[3] Schlansker, Michael, et al. "High-performance ethernet-based communications for future multi-core processors. Proceedings of the 
2007 ACM/IEEE conference on Supercomputing. ACM, 2007. 
[4] N. J. Boden, et. Al.. "Myrinet: A gigabit-per-second localarea network." IEEE Micro, vol. 15, no. 1, pp. 29-36. 
[5] F. Petrini, et. al. “The Quadrics Network: High Performance Clustering Technology”, IEEE Micro, Feb. 2002, pp. 46-57. 
[6] J. Liu, et. al. “High Performance RDMA-Based MPI Implementation over Infiniband”, Proceedings of the 17th Annual Conference on 
Supercomputing, June 2004, pp. 295-304.  
[7] Jacobsen, Matthew, and Ryan Kastner. "RIFFA 2.0: A reusable integration framework for FPGA accelerators." Field Programmable 
Logic and Applications (FPL), 2013 23rd International Conference on. IEEE, 2013 

323 
 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVIII – 2015 – Issue 1 
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:   

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology 
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace 

[8] Eguro, Ken. "SIRC: An extensible reconfigurable computing communication API." Field-Programmable Custom Computing Machines 
(FCCM), 2010 18th IEEE Annual International Symposium on. IEEE, 2010. 
[9] Maniu, Rares, L.A. Dumitru. "Self-adaptive networks with history extrapolation, evolutionary selection and realtime response." 
Optimization of Electrical and Electronic Equipment (OPTIM), 2014 International Conference on. IEEE, 2014. 
[10] Shah, Syed Abdullah, et al. "An architectural evaluation of SDN controllers." Communications (ICC), 2013 IEEE International 
Conference on. IEEE, 2013. 
[11] Naous, Jad, et al. "Implementing an OpenFlow switch on the NetFPGA platform." Proceedings of the 4th ACM/IEEE Symposium on 
Architectures for Networking and Communications Systems. ACM, 2008. 
[12] Fernandez, Marcial P. "Comparing openflow controller paradigms scalability: Reactive and proactive." Advanced Information [13] 
[13] Networking and Applications (AINA), 2013 IEEE 27th International Conference on. IEEE, 2013. 
Khondoker, Rahamatullah, et al. "Feature-based comparison and selection of Software Defined Networking (SDN) 
controllers." Computer Applications and Information Systems (WCCAIS), 2014 World Congress on. IEEE, 2014. 

324 
 


