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Abstract: Proteins are considered the most important molecules found in living cells because they are fundamental to many of the life 
processes. In order to accomplish their tasks, proteins fold in their native state, which is the three-dimensional arrangement of their 
atoms in which the protein reaches its minimum energy. The protein structure prediction (PSP) problem consists in finding the native 
state of a protein starting from its atoms. The HP model (Hydrophobic-Polar) is one of the simplified folding models that have been used 
for this problem. Despite its simplicity it captures well enough the interactions of atoms within the molecule. However, the protein folding 
problem in the HP model is NP-hard both In 2D, and 3D. In previous papers we have applied Particle Swarm Optimization (PSO) to the 
PSP problem with good results compared to other meta-heuristic methods. In this paper we seek to optimize the parameters of PSO to 
improve its results for this problem. 
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 Introduction 
Proteins are considered the most important molecules found in 
living cells because they are fundamental to many of the life 
processes. In order to accomplish their tasks, proteins fold to 
their native state which represents the energetic ground state 
of the protein. This particular three-dimensional arrangement 
of the atoms of the protein is the state in which the protein 
reaches its minimum energy. The protein folding problem was 
included by Science magazine in the list of biggest unsolved 
science problems [1]. Special algoritms had to be invented for 
protein folding simulations due to the high computational 
complexity, even with very simplified models. 
The protein structure prediction (PSP) problem consists in 
finding good computational algorithms for prediction of protein 
native state starting from the amino acid sequence. It is part of 
the larger protein folding problem and a long standing goal of 
computational biology. Research on the PSP problem focuses 
on two main directions: prediction based on existing databases 
of protein foldings and similarities between proteins, and 
prediction using physics laws without derived knowledge [2]. 
Our current research lays on the latter path. 
The following section presents briefly the protein folding 
terminology and the goals of the PSP problem. Section 3 
presents the 2D lattice HP model and two folding encodings. 
Section 4 presents the PSO for the PSP problem. Section 5 
presents the exp erimental results obtained with PSO and GAs 
for various proteins. The conclusions section contains some 
remarks ab out current status and future work directions. 
The Protein Structure Prediction Problem 
Proteins perform a vast range of indispensable roles: enzymes 
speed up chemical reactions, hormones regulate the quantities 
of molecules, immunological proteins protect the cell of foreign 
agents, etc. From the chemical p oint of view, they are organic 
compounds created from sequences of amino acids. Each 
amino acid has a structure common to all amino acids and a 
residual attachment. The residual group is the part that 
differentiates the amino acids. 
The ribosomes sequence amino acids according to DNA 
instructions forming the primary structure of the protein. To 
carry out its tasks, the protein evolves to higher level 
structures, by linking amino acids with hydrogen bonds (the 
secondary structure), folding the resulting polypeptide chain 
into three dimensional structures (the tertiary structure) and 
coupling together multiple chains (the quarternary structure). 
The tertiary structure of the protein is called the native state. 
Understanding how proteins fold into their native states is a 
major goal of bioinformatics. 
A part of the protein folding problem is the protein structure 
prediction problem: devising good computational algorithms for 
prediction of the protein native state from its amino acid 
sequence. Designing such algorithms is an important research 
area of computational biology. The major contributions of 
computer based modeling for the PSP problem are 
acknowledged by the bioengineering community in the form of 

the CASP PSP competitions, which are held every two years 
since 1994. 
Various simplified models for the protein structure exist (e.g. 
the Toy model, the Functional Model Protein — FMP, the 
Hydrophobic-Polar model — HP). Despite the simplicity of 
these models, the protein folding problem is still very hard. The 
high computational complexity of predicting the native state of 
a protein using information ab out the primary structure 
recommends this problem for metaheuristic approaches. 
The HP Lattice Model 
The full complexities of the folding processes that take place in 
proteins are yet to be unveiled. Even if they were known, 
detailed all atom simulations of such complex processes would 
not be possible for large proteins in modern computers. In 
order to tackle the protein folding problem, simpler models 
were developed. 
In lattice models, amino acids can occupy fixed sites on a 
square lattice (other lattice types can also be considered [3]). 
The distances between adjacent amino acids are equal and 
the folding angles are multiple of 90 degrees. Lattice models 
are usually simple enough to be studied in detail, yet they 
include general principles which provide deep insights on the 
folding process. 
The current theory on the causes of protein folding is that the 
hydrophobic interactions are the dominant component of the 
folding code [4]. With respect to this, the amino acids can be 
hydrophilic (water-attracting) or hydrophobic (water-rep elling). 
Hydrophilic amino acids (H) are electrically polarized, capable 
of bonding with Hydrogen, and soluble in water. Hydrophobic 
amino acids (P) are neutral from an electrical point of view, 
non-polar and they prefer other neutral non-polar solvents. 
The HP model focuses only on the short-range contacts of 
hydrophobic amino acids and ignores any other type of 
interactions. The energy of the folding decreases for each pair 
of unbound hydrophobic amino acids which are next to each 
other in the lattice. Formally, the energy of a protein folding in 
the HP model it is computed by: 

 
where pi and pj are the locations of hydrophobic amino acids i 
and j, and 

 
where ||⋅||1 denotes the Manhattan distance. Despite its 
simplicity, the HP model remains a focus of research in 
computational biology and statistical physics [5]. 
Even with very simple models, the protein folding problem is 
still very hard due to the large number of possible 
conformations and the many local minima in the energy 
landscape. In fact, the PSP problem in the HP model is a NP-
hard problem [6]. 
A folded protein is a self avoiding chain of amino-acids. The 
most common folding encodings store the angles/directions of 
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the bonds between amino acids. This approach ensures that 
the chaining hard constraint is satisfied (but not the self 
avoidance) and has low memory requirements. In absolute 
encoding, for each amino acid of the protein (except the first 
one) a folding code sets the next folding direction 
independently of the previous code. In relative encoding, for 
each amino acid (except the first two) a folding code sets the 
next folding direction in the context of the previous two codes.  
 
Figure 1 presents the folding instructions on 2D square lattices 
for absolute and relative encodings. The relative encoding has 
less folding codes and instructions (i.e. smaller search space); 
the absolute encoding is more stable to changes. 

  
Figure 1. Absolute (left) and relative (right) folding 

instructions on a 2D lattice 
PSO for Protein Structure Prediction 
Particle Swarm Optimization is a meta-heuristic based on the 
principles of swarm intelligence, inspired by the social 
behavior of bird flocking. It uses a set of potential solutions 
(called particle swarm) to solve optimization problems. The 
objective function describes a specific optimization problem 
and defines the problem landscape in terms of solutions 
quality. Particles fly in the problem landscape on oscillating 
trajectories, searching for high quality solutions. The search 
process uses a simple inter-particle communication method 
that allows particles to develop a collab orative search b 
ehavior. For a thorough description on the PSO metaheuristic 
we refer the user to [7]. 
The real-valued PSO algorithm was applied successfully on 
the PSP problem with various off-lattice models [8–10]. 
Although the search space is larger, these off-lattice models 
give the PSO algorithm more freedom to explore it, more 
informative feedback, and provide a smooth energy 
landscape. The successes reported by real-valued PSO for 
off-lattice protein folding models are very encouraging. In 
previous papers [11-12] we have applied Particle Swarm 
Optimization (PSO) to the PSP problem with on-lattice models 
and found it to perform well compared to other meta-heuristic 
methods. 
When working with lattice models, the number of possible 
codes for each folding operation depends on the dimensions 
of the lattice (i.e. 2D or 3D) and the folding representation (i.e. 
absolute or relative). In 2D lattices, there are 4 codes in 
absolute encoding (i.e.Up, Down, Left, Right) and 3 codes in 
relative encoding (i.e. Left, Right, Ahead). The search space of 
the PSP problem is the set of all valid protein conformations 
and the PSO algorithm needs to be able to access any point in 
it represented with these folding codes. 
In our previous research [12], we used a version of the binary 
PSO [13] where groups of position elements (i.e. binary 
values) encode a single folding code. For the 2D HP lattice 
model, the minimum number of elements in the group is 2. In 
order to decode the protein folding represented by the position 
of a particle in the search space, each type of group values 
needs to be decoded into a valid folding instruction. Therefore, 
we used the following representation mappings: 

- absolute encoding: Down = 00, Up = 01, Left = 10, Right 
= 11; 

- relative encoding: Ahead = 00 and 01, Left = 10, Right = 
11. 

It should be noted that the Ahead code in relative 
encoding has two representations. This was a design decision 
which simplifies the implementation of the algorithm: a 
substitution procedure replaces 01 groups with 00 prior to 
evaluation. 

If the protein contains n amino acids, then the position and 
velocity vectors of the particle have 2(n − 1) values for 
absolute encoding and, respectively, 2(n − 2) values for 
relative encodings. 
Parameter optimization of PSO for Protein Structure 
Prediction 
In our previous research [12] we used a particular protein as 
an initial test bench for selection adequate parameters for 
PSO and GAs in competing tests. Due to large number of 
possible configurations for PSO parameters, an exhaustive 
search of best parameters is impossible. Even if such a 
configuration would be found for a particular protein pool, is it  
 
very likely that it will not perform well on any given proteins, in 
accordance ot the No Free Lunch theorem.  
Therefore, in this paper we research the use of genetic 
algorithms (GA) to automatically optimize the parameters of 
PSO for protein structure prediction for a given protein pool. 
To this end, a genetic algorithm [14] is used to search among 
the various parameter configuration for PSO the one that 
provides best result for the given protein pool. 

The parameters for the GA we used are as follows: 
- population size: 20 individuals 
- runtime: 50 generations 
- mutation probability: 10% 
- crossover probability: 60% 
- selection method: roulette wheel 
- solution selection: best from all generations 

The experimental setup is described next. For our experiments 
we used hybrid chromosomes for the genetic algorithm, which 
were encoded as binary strings (for ease of implementation). 
These hybrid chromosomes encode the major parameters of a 
PSO algorithm: individual learning factor, social learning 
factor, network topology, velocity limit and inertial factor. 
For the individual and social learning factors, the GA will 
optimize the bounds of the liniar random number generator 
that PSO uses. The allowed values for their corresponding 
genes will encode numbers between 0.25 and 4 with a 0.25 
precision scale. The 16 values allowed for each parameter are 
encoded in the GA chromosome using 4 bits. 
For the network topology, the GA will select one of the 
standard PSO topologies: star, full, ring, and tree. These 4 
topology types are encoded in the GA chromosome using 2 
bits. 
The GA selects values for the velocity limit from 0.5 to 4.5 with 
a 0.5 precision scale, using 3 bits to encode it in the 
chromosome. 
For the inertia factor, GA allows for values between 0.5 and 
1.5, with a 0,125 precision scale, encoded in a set of 3 bits. 
Therefore, the total length of the GA chromosome is 16 bits. 
An exhaustive search of the best PSO performance within this 
parameter setup would require 65536 PSO experiment runs. 
Considering the computational effort required to run one PSO 
experiment for the PSP problem, an exhaustive search is 
much more demanding than a GA run with 20 individuals and 
50 generations. 
It is obvious that swarm size and number of algorithm 
iterations are missing from the previous list of PSO parameters 
that GA controls. Although they obviously affect the 
performance of the PSO algorithm, they also have an 
important role in the computational effort. Since we wanted to 
maintain control over the runtimes of the algorithm and to 
provide a common test ground for the GA chromosomes, we 
decided to fix these values to 100 particles and 100 iterations. 
Also fixed in the PSO algorithm is the encoding method. We 
selected absolute encoding for ease of implementation. 

For our experiments, we used the protein pool from [5]: 
Test Protein string  Length Minimum 

energy 
P1 3H 1P 1H 5P 1H  11   -2 
P2 1H 1P 1H 2P 2H 1P 2H 1P 

1H 1P 2H 2P 1H 1P 1H  
20   -9 

P3 2H 2P 1H 2P 1H 2P 1H 2P 
1H 2P 1H 2P 1H 2P 2H  

24   -9 

P4 2P 1H 2P 2H 4P 2H 4P 2H 25   -8 
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4P 2H  
P5 3P 2H 2P 2H 5P 7H 2P 2H 

4P 2H 2P 1H 2P  
36    -14 

Table 1. The protein strings used in the protein pool test 
bench. 

From the GA run, the individual with the best fitness over all 
iterations was selected as the solution of the algorithm. The 
genetic algorithm was run 20 times. The parameters identified 
by GA as producing good PSO setups for PSP are presented 
below. 
For the individual and social learning factors, in 75% of cases 
the GA decided to use a value greater than 1, with an average 
of 1.65. We estimate that this value, which is larger than the 
one we used in previous experiments, produces more energy  
 
 
variation during the PSO run, which helps it to better explore 
the search space. 
Regarding the network topology, the GA has selected one of 
the standard PSO topologies with the following frequencies: 
star - 42%, full - 36%, ring - 20%, and tree - 2%. It seems that 
GA favored the highly connected topologies (star and full). 
This can be explained by the speed of distribution of 
information throughout the networks. In the star and full 

network, the information about new low energy folds is quickly 
shared with the rest of the group, which can then focus on 
exploiting that particular information by attempting variations 
on that fold. It is interesting to notice, that star topology was 
the most preferred one. Our theory is that this happens 
because it provides a small amount of buffering, too, in 
contrast to the full topology. It would be interesting to test  
 
 
multi-level star (star of stars) topologies, but this is outside the 
scope of this article. 
As expected, for the velocity limit, GA favored values larger 
than 3 in 85% of the cases. This large values allow the PSO 
particles to keep swarming around promising areas of the 
search space, trying to optimize the existing solutions. 
For the inertia factor, GA selected values between 0.75 and 
1.125 in 90% of the cases, which is in tune with the settings for 
this parameter recommended in the literature. 
In all of the cases, PSO algorithm with the parameters settings 
found by GA was able to correctly identify the minimum energy 
configuration of the proteins test pool. This is in contrast with 
previous results in which the PSO algorithm found the 
minimum energy configurations only for the shorter proteins 
chains. 

 
Conclusions 
As indicated by our previous research, particle swarm optimization can be successfully used for the protein structure prediction problem. 
Furthermore, the its parameters can be optimized to improve its performance on given protein chains. However, the research presented 
in this paper could be extended further by providing better resolution to the values of the parameters and considering more complex 
configurations (like the star of stars topology). Ofcourse, this would require more computational resources, so a good balance between 
the optimization of PSO parameters and the actual PSO search process is needed, which is itself an optimization problem. 
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