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Abstract : When speaking about linear programming problems of big dimensions with rare matrix of the system, resolved through 
simplex method, it is necessary, at each iteration, to calculate the inverse of the base matrix, which leads to the loss of the rarity 
character of the matrix. The article proposes the replacement of the calculus of the inverse of the base matrix with the solving through 
iterative parallel methods of a linear system with rare matrix of the system. 
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1. Introduction 

Linear programs for big real systems are 
characterized by rare matrixes, having a low percentage of 
non-void elements. The rare character appears at each base 
matrix, but disappears at the inverse of this matrix. In its 
classical form, the simplex method uses a square matrix, the 
inverse of the base matrix, whose value is putting up-to-date at 
each iteration. The number non-void elements of the inverse 
matrix increase rapidly and depend on the number of 
iterations. Because of this, in the place of the calculus of the 
rare matrix, one can solve the linear matrixes with the rare 
matrix of the system through iterative parallel methods.  

Let’s take the linear programming problem under the 
standard form: 
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where A is a matrix with m lines and n columns,   

nmn RcRbRx ∈∈∈ ,, .  
At each iteration, one takes a base, meaning a square matrix 
of order m, which can be inverted, extracted from matrix A, 

noted with 
IA , where mINI =⊂ , . A so-called 

basic solution is associated to the base I  defined by: 
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where I  is the complement of  I  in N . 
 The bases which are being successively generated 

through simplex method are of the type 0≥B
Ix , meaning 

the basic solutions considered are all admissible (they fulfill the 
conditions  (1) and (2)). 
An iteration consists of a change of the base  I  into an 
adjacent base I ′ ; this is a base obtained through the 

changing of the index Ir∈  with the index Is∈ :

 srII +−=′ .  (3) 
To determine r  and s  one has to calculate: 
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where 
II dfu ,,  are line vectors. This allows that Is∈  is 

selected by the condition 0>sd . Then: 
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where 
sa  is column s  of matrix A , and 

ssB
I aTbx ,,,  are 

column vectors. One obtains Ir ∈  through condition: 
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 Once the values r  and s  are determined, there 
follows the updating of the inverse of the base matrix , 

meaning that  ( ) 1−′IA  is determined, which is obtained from 
the relation: 
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where )(ηrE  is the matrix obtained from the unit matrix  of 

order n, by replacing the column  
re  with the vector:
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where 
sI aAc 1)( −= . 

 In this way the mathematical equations are 
represented by the relations (4-9), and the inverse of the base 
matrix appears in the relations (4), (6), (7). The last three 
relations can be replaced by: 

  
II fuA =  (4’) 

  bxA B
I

I =  (6’) 

  
ssI aTA =  (7’) 

 In the first equation, the matrix is the transpose of 
the base matrix; in the last two equations even the base matrix 
appears and consequently these two systems benefit from the 
rare character of matrix A, an efficient solution being possible 
through iterative parallel methods.  
 
2. The parallel algorithm of the conjugated gradient  
 In order to solve linear systems of large dimensions 
of the type (4’-7’), we are going to present a parallel 
implementation of the algorithm of the conjugated gradient, 
method where, in the first place, one has to make the 
operations of multiplication between a rare matrix and a vector 
parallel. 

Let’s take the product Axy =  where A is a rare 
matrix n×n, and x and y are vectors of n dimension. In order to 
accomplish a parallel execution of the product Axy =  one 
has to perform a partitioning of the matrix A into a matrix 
distributed over many processors. In this view, a subset of the 
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components of vector x and consequently a subset of the lines 
of matrix A are being allocated to a processor so that the 
components of vectors x and y can be divided into three 
groups: 

 - internal are those components which 
belong (and consequently are calculated) to the 
processor and do not take part into the 
communication between the processors. We say in 
consequence that yj is an internal component if it 
is calculated by the processor which it belongs to 
and if the index j of the column corresponding to the 
element aij unlike zero from line i correspond to a 
component xj which also belongs to the same 
processor; 
 - border set are those components which 
belong (and by consequence are calculated) to the 
processor, but they require a communication with 
other processors in order to calculate them. Thus, 
we may say that yj is a border set component if it 
is calculated by the processor which it belongs to 
and if at least one column index  j associated to the 
non-void elements  aij from line i, corresponds to a 
component  xj which does not belong to the 
processor; 
 - external are those components which do 
not belong and by consequence are calculated) to 
the processor, but which correspond to column 
indexes associated to non-void elements from the 
lines belonging to the processor. 

In conformity with this organisation, there corresponds to each 
processor a vector whose components are ordered as follows: 

 - the first components are numbered from 
0 to Ni-1, where Ni is the number of internal 
components ; 
 - the next components are border set 
components and occupy the positions from  Ni to 
Ni+Nf-1 , where Nf is the number of border set 
components; 
 - the last components are external 
components and occupy the positions comprised 
between Ni+Nf and Ni+Nf+Ne-1, where Ne is the 
number of external components. 
Within this vector associated with a processor, the 

external components are being ordered so that those which 
are used by the processor occupy successive positions.   

For example let’s take A(6, 6) and presuppose that 

210 ,, xxx  and by consequence the lines  0, 1, 2 of matrix 

A are allocated to the processor 0; 3x  and 4x  and by 

consequence the lines 3 and 4 are allocated to the processor  

2; 5x  and by consequence line 5 are allocated to the 

processor 1. The matrix  A has the non-void elements marked 
by a  *  in the following description. 
  0   1   2   3   4   5 
                       0       *     *     *     0   0   0 
         proc.0   1       *    *    *    0   0   * 
                       2       *    *    *    *    *    * 
         proc.1   3 
                       4 
         proc.2   5 
 
For processor 0 which has the lines 0, 1, 2 attached to the 

matrix A and respectively the components 210 ,, xxx , we 

have: 

Ni=1: a sole internal component y0 because in calculating the 

y0 only there appears only those 210 ,, xxx   that belong 

to the processor  0. 
Nf=2: two border set components y1 and y2 in whose calculus 
the elements belonging to other processors also appear: 

- in the calculus of y1 there also appears x5 which 
belongs to the processor 1  
- in the calculus of y2 there also appears x5 which 
belongs to the processor 1 and x3, x4 belonging to 
the processor 2 

Ne=3: three external components because in the calculus of  
y0, y1, y2 there appear three components  x5, x3, x4 which 
belong to other processors.  
The communication graph corresponding to the processor 0 is 
defined in the following picture: 
 

 
 To the lines 0, 1, 2,  the following vectors 
correspond, vectors in which the indexes of the columns 
corresponding to the external components are grouped and 
sorted into processors: 
 Line the indexes of columns with non-void 
elements  
   0  0  1  2 
   1  1  0  2  5 
   2  2  0  1  5 3  4 
 Each processor has to acknowledge on which of the 
processors the external components are being calculated: in 
the above example, processor 1 calculates the component y5 
and processor 2 calculates the components y3 and y4. At the 
same time, each processor has to acknowledge which of its 
internal components are being used by other processors.  
Let’s remind the schematic structure of the algorithm CG: 
 x=initial value 

 r=b-Ax  … 
 p=r …initial direction 
 repeat  
  v=A*p //multiplication matrix-vector 
  a=(rT*r)/(pT*v) //product “dot” 
  x=x+a*p //update solution vector operation 
“saxpy” 
  new_r=new_r-a*v //update rest vector 
operation “saxpy” 
  g=(new_rT*new_r)/(rT*r) //product “dot” 
  p=new_r+g*p //update new direction 
operation “saxpy” 
  r=new_r 
until (new_rT*new_r suficient de mic) 

It is noticed that the following operations are necessary in the 
algorithm CG: 

1. A product rare matrix-vector 
2. Three vector updatings (operations “SAXPY”) 
3. Two scalar products  (operations “DOT”) 
4. Two scalar dividings 
5. A scalar comparison for the testing of the 

convergence  
For the parallel implementation of the algorithm CG, 

the following distinct parts appear: 
2.1) Distribution of the date on processors  

135 
 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVII – 2014 – Issue 2 
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:   

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology 
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace 

 The date are being distributed on processors on 
lines so that each processor has a consecutive number of lines 
from the rare matrix assignated: 
typedef struct tag_dsp_matrix_t 

 int N; /* dimension matrix N×N */ 
 int row_i, row_f; /*  rank of beginninbg and 
ending line which belongs to the processor*/ 
 int nnz; /*  number of non-void elements from the 
local matrix  */ 
 double* val;/*  elements of the matrix */ 
 int* row_ptr;/*  beginning of a matrix */ 
 int* col_ind;/*  column index*/ 
} dsp_matrix_t; 

Each processor will store the rank of the lines 
belonging to it, the elements of the matrix and two pointers 
row_ptr and col_ind used in the storing of the compressed on 
lines of a matrix. 
2.2) In/out operation  
 In/out operations comprise the reading of the matrix 
and its stiring in a compressed lines format.  
2.3) Operations on vectors  
The operations on vectors are of two types: 
 - operations “saxpy” for updating of the vectors, 
which do not require communication between processors; 

- operations “dot” ( scalar product) which do not 
require communication between processors with the 
help of function  MPI_Allreduce. 

2.4) Multiplication matrix-vector  
Each processor uses at the calculus the lines from 

the matrix which belong to it, but needs elements of the vector 
x which belong to other processors. This is why a processor 
receives these elements from the other processors and sends 
at the same time its part to all the other processors. In this 
way, we can write schematically the following sequence: 

 new_element_x=my_element_x  
 for i=0, num_proces 
  - send my_element_x to the processor 
my_proc+i 
  - calculate locally with new_element_x 
  -receive new_element_x from the 
processor my_proc-i 
Repeat 
 

3. The optimisation of the communication  
 A given processor does not need the complete part 
of x which belongs to other processors, but only the elements 
corresponding to the columns which contain non-void 
elements. At the same time it sends to the other processors 
only the non-void elements of x. This is the reason why the 
structure presented above comprises the field col_ind which 
indicates the rank of the column that contains a non-void 
element. In this way, we can schematically write the following 
sequence: 

- each processor creates a mask which indicates the 
rank of the columns of non-void elements from A 
- communication between processors:  
new_element_x=my_element_x  
 for i=0, num_proces 
  - if communication necessary between  
my_proc and my_proc+i 
  - send my_element_x to_proc+i 
  endif  
  -calculate locally with  new_element_x 
  -receive new_element_x from processorl 
my_proc-i 
 repeat 

 The algorithm implemented for a matrix of a 
dimension N×N=960×960, with 8402 non-void elements has 
given the following results: 
 
Number of 
processors 

Number  
of 

Calculus 
duration 

Duration of 
communication 

iterations between 
processors 

1 205 3.074 0.027 
2 205 2.090 0.341 

Total 
duration 

Time for 
the 

memory 
allocation  

Time for 
operations 

with vectors  

3.384 0.002 0.281 
2.568 0.002 0.136 

 
• time is expressed in minutes. 

 
4. Conclusions 
The analysis of the performance of algorithm CG is done from 
the point of view of the time necessary for the execution of the 
algorithm. In this model the initiation times for the matrix  A 
and of the other vectors used is neglectable. At the same time, 
the time necessary for the verification of the convergence is 
disregarded and it is presupposed that the initializations 
necessary for an iteration have been done.  
A) Analysis of the sequential algorithm  
Notations: 
m=vectors dimension 
N=total number of non-void elements of matrix A 
k=number of iterations for which the algorithm is executed  
Tcomp1s=total calculus time for the vectors updating (3 
operations SAXPY) 
Tcomp2s=total calculus time for the product Ap and for the scalar 
product  (r, r) 
Tcomp3s=total calculus time for the scalar products (A, Ap) and  
(p, Ap) 
Tcomp4s=total calculus time for the scalars α and β 
Tseq=total calculus time for the sequential algorithm  

Then scompscompscompscompseq TTTTT 4321 +++=  

Within the algorithm there are three operations 
SAXPY, each vectoir being of dimension  m. If we suppose 
that tcomp is the total calculus time for the multiplication of two 
real numbers with double precision and for the adding of the 

results, then   compscomp tkmT **31 ∗=  

Tcomp2s is the total calculus time for the product rare matrix-
vector and for the two scalar products. The product matrix-
vector implies N elements and the scalar product implies m 
elements. Then 

 ( ) compscomp tkmNT **2 +=  

Tcomp3s is the calculus time of two scalar products and can be 

written as compscomp tkmT **23 ∗= . 

The calculus for the scalars α and β implies two operations of 
division and a subtraction of real numbers. Let’s take tcompα 
calculus time for all these operations. Then    

α∗= compscomp tkT *24 . 

 The total calculus time for the sequential algorithm 
CG is: 

 ( ) α++= compcompseq tktNmT **2**6 . 

B) Analysis of the parallel algorithm  
 Within the parallel algorithm each processor 
executes k iterations of the algorithm in parallel. We define: 
b=dimension of the block from matrix A and from vectors x, r, p 
belonging to each processor  
p=number of processors 
Tcomp1p=total calculus time for the vectors updating on each 
processor  
Tcomp2p=total calculus and communication time for the Ap and 
(r, r) 
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Tcomp3p=total calculus time for the calculus of the scalar 
products and of the global communication  
Tcomp4p=total calculus time for the scalars α and β 
Here Tcomp1p is the total time for the calculus of 3b vectors 
updating. If matrix A is very rare (the density is smaller than 5 
percentages) the communication time exceeds the calculus 
time. This way Tcomp2p is taken equal with tcomm, the 
communication time of a block of dimension b to all the p 
processors. Tcomp3p implies the global calculus and 
communication time, noted with tglb. Then: 
 

pcomppcomppcomppcomppar TTTTT 4321 +++=  

where: 

 comppcomp tkbT ***31 =  

 commpcomp tT =2  

 glb3 ***2 ttkbT comppcomp +=  

 α= comppcomp tkT **24  

Therefore, to estimate Tseq and Tpar it is necessary to estimate 
the values of tcomp,  tcompα,  tcomp and tglb. 

 
REFERENCES 
[1] Bank R, Chan T. An analysis of the composite step biconjugate gradient method. 1992. 
[2] Bank R, Douglas C. Bank R, Dupont T. Analysis of atwa-level scheme for solving finite element equations. Univ. Texas, 
Austin, 1980. 
[3] Golub G, Van Loan. Matrix computations. Notrh Oxford Academic, Oxford 1983. 
[4] Samarski A, Nicolaev E. Numerical methods for grid equations. Iterative methods. Basel 1989. 
[5] Ştefanescu A, Zidãroiu C, Operational research, Ed. Didacticã şi pedagogicã, Bucureşti, 1981 
[6] Yong D.M. Iterative solution of large linear systems, Academic Press, New York, 1971. 
[7] ---- MPI: A Message-Passing Interface Standard,The University of Tennessee,  MPICH.NT Version 1.2.0.4, 2000 

  

137 
 


	Abstract : When speaking about linear programming problems of big dimensions with rare matrix of the system, resolved through simplex method, it is necessary, at each iteration, to calculate the inverse of the base matrix, which leads to the loss of t...
	1. Introduction
	3. The optimisation of the communication
	A) Analysis of the sequential algorithm
	B) Analysis of the parallel algorithm


