
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVII – 2014 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

ITERATIVE PARALLEL METHOD FOR THE OPTIMIZATION SIMPLEX ALGORITHM

Ioan POPOVICIU
Assistant professor, PhD Naval Academy “Mircea cel Batran”, Constanta

Abstract : When speaking about linear programming problems of big dimensions with rare matrix of the system, resolved through
simplex method, it is necessary, at each iteration, to calculate the inverse of the base matrix, which leads to the loss of the rarity
character of the matrix. The article proposes the replacement of the calculus of the inverse of the base matrix with the solving through
iterative parallel methods of a linear system with rare matrix of the system.
Keywords: simplex, parallel, processor

1. Introduction

Linear programs for big real systems are
characterized by rare matrixes, having a low percentage of
non-void elements. The rare character appears at each base
matrix, but disappears at the inverse of this matrix. In its
classical form, the simplex method uses a square matrix, the
inverse of the base matrix, whose value is putting up-to-date at
each iteration. The number non-void elements of the inverse
matrix increase rapidly and depend on the number of
iterations. Because of this, in the place of the calculus of the
rare matrix, one can solve the linear matrixes with the rare
matrix of the system through iterative parallel methods.

Let’s take the linear programming problem under the
standard form:

0≥
=

x
bAx

 (1)

))(max(xcxf T= (2)
where A is a matrix with m lines and n columns,

nmn RcRbRx ∈∈∈ ,, .
At each iteration, one takes a base, meaning a square matrix
of order m, which can be inverted, extracted from matrix A,

noted with
IA , where mINI =⊂ , . A so-called

basic solution is associated to the base I defined by:

 0,)(1 == − B
I

IB
I xbAx

where I is the complement of I in N .
 The bases which are being successively generated

through simplex method are of the type 0≥B
Ix , meaning

the basic solutions considered are all admissible (they fulfill the
conditions (1) and (2)).
An iteration consists of a change of the base I into an
adjacent base I ′ ; this is a base obtained through the

changing of the index Ir∈ with the index Is∈ :

 srII +−=′ . (3)
To determine r and s one has to calculate:

1)(−= II Afu

 (4)
III uAfd −=

 (5)

where
II dfu ,, are line vectors. This allows that Is∈ is

selected by the condition 0>sd . Then:

 bAx IB
I

1)(−=
 (6)

sIs aAT 1)(−=

 (7)

where
sa is column s of matrix A , and

ssB
I aTbx ,,, are

column vectors. One obtains Ir ∈ through condition:









>∈= 0,|min s
is

i

i
s

r

r TIi
T
x

T
x

(8)

 Once the values r and s are determined, there
follows the updating of the inverse of the base matrix ,

meaning that () 1−′IA is determined, which is obtained from
the relation:

 () 11))((−−′ = I
r

I AEA η (9)

where)(ηrE is the matrix obtained from the unit matrix of

order n, by replacing the column
re with the vector:









−−−−= +−

r

n

r

r

rr

r

r c
c

c
c

cc
c

c
c ,,,1,,, 111 η

where
sI aAc 1)(−= .

 In this way the mathematical equations are
represented by the relations (4-9), and the inverse of the base
matrix appears in the relations (4), (6), (7). The last three
relations can be replaced by:

II fuA = (4’)

 bxA B
I

I = (6’)

ssI aTA = (7’)

 In the first equation, the matrix is the transpose of
the base matrix; in the last two equations even the base matrix
appears and consequently these two systems benefit from the
rare character of matrix A, an efficient solution being possible
through iterative parallel methods.

2. The parallel algorithm of the conjugated gradient
 In order to solve linear systems of large dimensions
of the type (4’-7’), we are going to present a parallel
implementation of the algorithm of the conjugated gradient,
method where, in the first place, one has to make the
operations of multiplication between a rare matrix and a vector
parallel.

Let’s take the product Axy = where A is a rare
matrix n×n, and x and y are vectors of n dimension. In order to
accomplish a parallel execution of the product Axy = one
has to perform a partitioning of the matrix A into a matrix
distributed over many processors. In this view, a subset of the

134

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVII – 2014 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

components of vector x and consequently a subset of the lines
of matrix A are being allocated to a processor so that the
components of vectors x and y can be divided into three
groups:

 - internal are those components which
belong (and consequently are calculated) to the
processor and do not take part into the
communication between the processors. We say in
consequence that yj is an internal component if it
is calculated by the processor which it belongs to
and if the index j of the column corresponding to the
element aij unlike zero from line i correspond to a
component xj which also belongs to the same
processor;
 - border set are those components which
belong (and by consequence are calculated) to the
processor, but they require a communication with
other processors in order to calculate them. Thus,
we may say that yj is a border set component if it
is calculated by the processor which it belongs to
and if at least one column index j associated to the
non-void elements aij from line i, corresponds to a
component xj which does not belong to the
processor;
 - external are those components which do
not belong and by consequence are calculated) to
the processor, but which correspond to column
indexes associated to non-void elements from the
lines belonging to the processor.

In conformity with this organisation, there corresponds to each
processor a vector whose components are ordered as follows:

 - the first components are numbered from
0 to Ni-1, where Ni is the number of internal
components ;
 - the next components are border set
components and occupy the positions from Ni to
Ni+Nf-1 , where Nf is the number of border set
components;
 - the last components are external
components and occupy the positions comprised
between Ni+Nf and Ni+Nf+Ne-1, where Ne is the
number of external components.
Within this vector associated with a processor, the

external components are being ordered so that those which
are used by the processor occupy successive positions.

For example let’s take A(6, 6) and presuppose that

210 ,, xxx and by consequence the lines 0, 1, 2 of matrix

A are allocated to the processor 0; 3x and 4x and by

consequence the lines 3 and 4 are allocated to the processor

2; 5x and by consequence line 5 are allocated to the

processor 1. The matrix A has the non-void elements marked
by a * in the following description.
 0 1 2 3 4 5
 0 * * * 0 0 0
 proc.0 1 * * * 0 0 *
 2 * * * * * *
 proc.1 3
 4
 proc.2 5

For processor 0 which has the lines 0, 1, 2 attached to the

matrix A and respectively the components 210 ,, xxx , we

have:

Ni=1: a sole internal component y0 because in calculating the

y0 only there appears only those 210 ,, xxx that belong

to the processor 0.
Nf=2: two border set components y1 and y2 in whose calculus
the elements belonging to other processors also appear:

- in the calculus of y1 there also appears x5 which
belongs to the processor 1
- in the calculus of y2 there also appears x5 which
belongs to the processor 1 and x3, x4 belonging to
the processor 2

Ne=3: three external components because in the calculus of
y0, y1, y2 there appear three components x5, x3, x4 which
belong to other processors.
The communication graph corresponding to the processor 0 is
defined in the following picture:

 To the lines 0, 1, 2, the following vectors
correspond, vectors in which the indexes of the columns
corresponding to the external components are grouped and
sorted into processors:
 Line the indexes of columns with non-void
elements
 0 0 1 2
 1 1 0 2 5
 2 2 0 1 5 3 4
 Each processor has to acknowledge on which of the
processors the external components are being calculated: in
the above example, processor 1 calculates the component y5
and processor 2 calculates the components y3 and y4. At the
same time, each processor has to acknowledge which of its
internal components are being used by other processors.
Let’s remind the schematic structure of the algorithm CG:
 x=initial value

 r=b-Ax …
 p=r …initial direction
 repeat
 v=A*p //multiplication matrix-vector
 a=(rT*r)/(pT*v) //product “dot”
 x=x+a*p //update solution vector operation
“saxpy”
 new_r=new_r-a*v //update rest vector
operation “saxpy”
 g=(new_rT*new_r)/(rT*r) //product “dot”
 p=new_r+g*p //update new direction
operation “saxpy”
 r=new_r
until (new_rT*new_r suficient de mic)

It is noticed that the following operations are necessary in the
algorithm CG:

1. A product rare matrix-vector
2. Three vector updatings (operations “SAXPY”)
3. Two scalar products (operations “DOT”)
4. Two scalar dividings
5. A scalar comparison for the testing of the

convergence
For the parallel implementation of the algorithm CG,

the following distinct parts appear:
2.1) Distribution of the date on processors

135

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVII – 2014 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

 The date are being distributed on processors on
lines so that each processor has a consecutive number of lines
from the rare matrix assignated:
typedef struct tag_dsp_matrix_t

 int N; /* dimension matrix N×N */
 int row_i, row_f; /* rank of beginninbg and
ending line which belongs to the processor*/
 int nnz; /* number of non-void elements from the
local matrix */
 double* val;/* elements of the matrix */
 int* row_ptr;/* beginning of a matrix */
 int* col_ind;/* column index*/
} dsp_matrix_t;

Each processor will store the rank of the lines
belonging to it, the elements of the matrix and two pointers
row_ptr and col_ind used in the storing of the compressed on
lines of a matrix.
2.2) In/out operation
 In/out operations comprise the reading of the matrix
and its stiring in a compressed lines format.
2.3) Operations on vectors
The operations on vectors are of two types:
 - operations “saxpy” for updating of the vectors,
which do not require communication between processors;

- operations “dot” (scalar product) which do not
require communication between processors with the
help of function MPI_Allreduce.

2.4) Multiplication matrix-vector
Each processor uses at the calculus the lines from

the matrix which belong to it, but needs elements of the vector
x which belong to other processors. This is why a processor
receives these elements from the other processors and sends
at the same time its part to all the other processors. In this
way, we can write schematically the following sequence:

 new_element_x=my_element_x
 for i=0, num_proces
 - send my_element_x to the processor
my_proc+i
 - calculate locally with new_element_x
 -receive new_element_x from the
processor my_proc-i
Repeat

3. The optimisation of the communication
 A given processor does not need the complete part
of x which belongs to other processors, but only the elements
corresponding to the columns which contain non-void
elements. At the same time it sends to the other processors
only the non-void elements of x. This is the reason why the
structure presented above comprises the field col_ind which
indicates the rank of the column that contains a non-void
element. In this way, we can schematically write the following
sequence:

- each processor creates a mask which indicates the
rank of the columns of non-void elements from A
- communication between processors:
new_element_x=my_element_x
 for i=0, num_proces
 - if communication necessary between
my_proc and my_proc+i
 - send my_element_x to_proc+i
 endif
 -calculate locally with new_element_x
 -receive new_element_x from processorl
my_proc-i
 repeat

 The algorithm implemented for a matrix of a
dimension N×N=960×960, with 8402 non-void elements has
given the following results:

Number of
processors

Number
of

Calculus
duration

Duration of
communication

iterations between
processors

1 205 3.074 0.027
2 205 2.090 0.341

Total
duration

Time for
the

memory
allocation

Time for
operations

with vectors

3.384 0.002 0.281
2.568 0.002 0.136

• time is expressed in minutes.

4. Conclusions
The analysis of the performance of algorithm CG is done from
the point of view of the time necessary for the execution of the
algorithm. In this model the initiation times for the matrix A
and of the other vectors used is neglectable. At the same time,
the time necessary for the verification of the convergence is
disregarded and it is presupposed that the initializations
necessary for an iteration have been done.
A) Analysis of the sequential algorithm
Notations:
m=vectors dimension
N=total number of non-void elements of matrix A
k=number of iterations for which the algorithm is executed
Tcomp1s=total calculus time for the vectors updating (3
operations SAXPY)
Tcomp2s=total calculus time for the product Ap and for the scalar
product (r, r)
Tcomp3s=total calculus time for the scalar products (A, Ap) and
(p, Ap)
Tcomp4s=total calculus time for the scalars α and β
Tseq=total calculus time for the sequential algorithm

Then scompscompscompscompseq TTTTT 4321 +++=

Within the algorithm there are three operations
SAXPY, each vectoir being of dimension m. If we suppose
that tcomp is the total calculus time for the multiplication of two
real numbers with double precision and for the adding of the

results, then compscomp tkmT **31 ∗=

Tcomp2s is the total calculus time for the product rare matrix-
vector and for the two scalar products. The product matrix-
vector implies N elements and the scalar product implies m
elements. Then

 () compscomp tkmNT **2 +=

Tcomp3s is the calculus time of two scalar products and can be

written as compscomp tkmT **23 ∗= .

The calculus for the scalars α and β implies two operations of
division and a subtraction of real numbers. Let’s take tcompα
calculus time for all these operations. Then

α∗= compscomp tkT *24 .

 The total calculus time for the sequential algorithm
CG is:

 () α++= compcompseq tktNmT **2**6 .

B) Analysis of the parallel algorithm
 Within the parallel algorithm each processor
executes k iterations of the algorithm in parallel. We define:
b=dimension of the block from matrix A and from vectors x, r, p
belonging to each processor
p=number of processors
Tcomp1p=total calculus time for the vectors updating on each
processor
Tcomp2p=total calculus and communication time for the Ap and
(r, r)

136

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XVII – 2014 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania // The journal is indexed in:

PROQUEST SciTech Journals, PROQUEST Engineering Journals, PROQUEST Illustrata: Technology, PROQUEST Technology
Journals, PROQUEST Military Collection PROQUEST Advanced Technologies & Aerospace

Tcomp3p=total calculus time for the calculus of the scalar
products and of the global communication
Tcomp4p=total calculus time for the scalars α and β
Here Tcomp1p is the total time for the calculus of 3b vectors
updating. If matrix A is very rare (the density is smaller than 5
percentages) the communication time exceeds the calculus
time. This way Tcomp2p is taken equal with tcomm, the
communication time of a block of dimension b to all the p
processors. Tcomp3p implies the global calculus and
communication time, noted with tglb. Then:

pcomppcomppcomppcomppar TTTTT 4321 +++=

where:

 comppcomp tkbT ***31 =

 commpcomp tT =2

 glb3 ***2 ttkbT comppcomp +=

 α= comppcomp tkT **24

Therefore, to estimate Tseq and Tpar it is necessary to estimate
the values of tcomp, tcompα, tcomp and tglb.

REFERENCES
[1] Bank R, Chan T. An analysis of the composite step biconjugate gradient method. 1992.
[2] Bank R, Douglas C. Bank R, Dupont T. Analysis of atwa-level scheme for solving finite element equations. Univ. Texas,
Austin, 1980.
[3] Golub G, Van Loan. Matrix computations. Notrh Oxford Academic, Oxford 1983.
[4] Samarski A, Nicolaev E. Numerical methods for grid equations. Iterative methods. Basel 1989.
[5] Ştefanescu A, Zidãroiu C, Operational research, Ed. Didacticã şi pedagogicã, Bucureşti, 1981
[6] Yong D.M. Iterative solution of large linear systems, Academic Press, New York, 1971.
[7] ---- MPI: A Message-Passing Interface Standard,The University of Tennessee, MPICH.NT Version 1.2.0.4, 2000

137

	Abstract : When speaking about linear programming problems of big dimensions with rare matrix of the system, resolved through simplex method, it is necessary, at each iteration, to calculate the inverse of the base matrix, which leads to the loss of t...
	1. Introduction
	3. The optimisation of the communication
	A) Analysis of the sequential algorithm
	B) Analysis of the parallel algorithm

