TWO MATHEMATICAL METHODS WITH APPLICATIONS IN NAVAL FRAMEWORK

Dalamitra Camelia¹ Petrea Adrian² Cristea Irina³ Ciobanu Camelia⁴ ¹Commercial Asistant, AMEROPA GRAINS SA, Constanta ²3 Officer Staff, UM 02003, Constanta ³PhD, University of Nova Gorica, Slovenia ⁴PhD, "MirceacelBatran" Naval Academy, Constanta

Abstract: The paper aims is to present how two mathematical models, in particular the linear programming and the transport problem, can be used in solving concrete problems in naval framework. **Key-words:** linear programming, mathematical model, transport problem.

THE PROBLEM OF THE OPTIMAL MIXING OR NUTRITION

"Croaziere Costa" offers high quality services meant to satisfy even the most challenging client. An important aspect is the one which concerns gastronomy, domain in which the staff has to establish a proper diet and to respect the specialists' advice who say that feeding is considered a fine one if certain substances are offered mainly organic products in well-established minimum quantities, of course here it is necessary that the menu for the passengers to have an optimal amount of nutritious substances.

On the other hand, the travel agent has the purpose of minimizing the costs for the optimal level of the nutritious substances.

Thus the aim for this diet is to contain nutritious substances: proteins, carbohydrates, fats, and vitamins(calcium) in the maximum amounts of 80g, 250g, 80g and respectively 5g reflected in the products: meat, fish, dairy products, fruits and vegetables[2], with the corresponding price per unit 20, 15, 12 respectively 10(the prices are in RON/kg).

We marked with u_{ij} the number of units from substances S_i , i = $\overline{1,4}$, which are found in a unit from the alimentary product A_i , j = $\overline{1,4}$.

Aliment Substance	A ₁ me at	A ₂ fish	A ₃ dairy products	A ₄ fruits/veg etables	Maxim umof nece- ssaryn utri- ents
S ₁ (proteins)	<i>u</i> ₁₁ = 3	u ₁₂ = 2	<i>u</i> ₁₃ = 0	<i>u</i> ₁₄ = 3	$b_1 = 80$
S ₂ (carbohydr ates)	u ₂₁ = 1	u ₂₂ = 2	u ₂₃ = 2	<i>u</i> ₂₄ = 0	b ₂ = 250
S ₃ (fats)	u ₃₁ = 2	u ₃₂ = 5	<i>u</i> ₃₃ = 0	u ₃₄ = 3	$b_3 = 80$
S ₄ (vitamins/ calcium)	u ₄₁ = 1	u ₄₂ = 3	u ₄₃ = 6	<i>u</i> ₄₄ = 0	<i>b</i> ₄ = 5
Aliment prices	<i>c</i> ₁ = 20	c ₂ = 15	<i>c</i> ₃ = 12	<i>c</i> ₄ = 10	
Consumer units	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	

This problem will be dealt with and solved by means of linear programming[1], [5]. As in this case we look for both maximization and minimization of the costs, the duality in the problems of linear programming occur.

The theory of linear programming problems has proven that starting from a linear programming problem whose numerical data are used, we can formulate another linear programming problem which asks for determining the opposite optimal value, and there is a tight connection between the solutions of two linear programming problems.

It is known that the pair of linear programming problems thus built observes a general principle from science, particularly from mathematics, named the duality principle. Usually the initial linear programming problem is named primal and the second one obtained by duality is named dual.

Considering these, the linear programming problem will be like this:

 $(max)f(x) = 20x_1 + 15x_2 + 12x_3 + 10x_4$

$$\begin{cases} 3x_1 + 2x_2 + 3x_4 \le 80\\ x_1 + 2x_2 + 2x_3 \le 250\\ 2x_1 + 5x_2 + 3x_4 \le 80\\ x_1 + 3x_2 + 6x_3 \le 5 \end{cases}$$
, i = $\overline{1,4}$

The dual problem could be transformed as below and we can write:

 $(min)g(y) = 80y_1 + 250y_2 + 80y_3 + 5y_4$

 $\begin{cases} 3y_1 + y_2 + 2y_3 + y_4 \ge 20\\ 2y_1 + 2y_2 + 5y_3 + 3y_4 \ge 15\\ 2y_2 + 6y_4 \ge 12\\ 3y_1 + 3y_3 \ge 10 \end{cases} + (-1) \rightarrow \\ \begin{cases} -3y_1 - y_2 - 2y_3 - y_4 \le -20\\ -2y_1 - 2y_2 - 5y_3 - 3y_4 \le -15\\ -2y_2 - 6y_4 \le -12\\ -3y_1 - 3y_3 \le -10 \end{cases}$

 $y_i \ge 0$, i = $\overline{1,4}$

Now we can introduce the compensation variable y_5, y_6 , y_7 §i y_8 and the problem becomes: $(min)g(y) = 80y_1 + 250y_2 + 80y_3 + 5y_4$

$$\begin{cases} -3y_1 - y_2 - 2y_3 - y_4 + y_5 = -20\\ -2y_1 - 2y_2 - 5y_3 - 3y_4 + y_6 = -15\\ -2y_2 - 6y_4 + y_7 = -12\\ -3y_1 - 3y_3 + y_8 = -10 \end{cases} y_i \ge 0 \text{ , } i = \overline{1,8}$$

Applying the dual simplex algorithm[1], [5] we obtain:

		с	8 0	25 0	8 0	5	0	0	0	0
C _b	В	b	P_1	P ₂	P_3	P_4	P_5	P_6	P ₇	<i>P</i> ₈
	p_5	-20	-3	-1	-2	-1	1	0	0	0
	p_6	-15	-2	-2	-5	-3	0	1	0	0
	p_7	-12	0	-2	0	-6	0	0	1	0
	p_8	-10	-3	0	-3	0	0	0	0	1
$P_4 \rightarrow$	Zj	0	0	0	0	0	0	0	0	0
₽ ₅ ←	Δj	/	8 0	25 0	8 0	5	0	0	0	0
5	p_4	20	3	1	2	1	- 1	0	0	0
0	p_6	45	7	1	1	0	- 3	1	0	0
0	p_7	108	1 8	4	1 2	0	- 6	0	1	0
0	p_8	- 10	- 3	0	- 3	0	0	0	0	1
$P_1 \rightarrow$	Zj	100	1 5	5	1 0	5	- 5	0	0	0
<i>₽</i> 8 ←	Δj	/	6 5	24 5	7 0	0	5	0	0	0

"Mircea cel Batran" Naval Academy Scientific Bulletin, Volume XVII - 2014 - Issue 1 Published by "Mircea cel Batran" NavalAcademy Press, Constanta, Romania

5	p_4	10	0	1	- 1	1	- 1	0	0	1
0	p_6	65/3	0	1	- 6	0	- 3	1	0	7/3
0	p_7	48	0	4	- 6	0	- 6	0	1	6
80	p_1	10/3	1	0	1	0	0	0	0	- 1/3
	zj	950/ 3	8 0	5	7 5	5	- 5	0	0	- 65/ 3
	Δ_j	/	0	24 5	5	0	5	0	0	65/ 3

Therefore the standard solution of the problem is: $x^{(s)} = \left(\frac{10}{3}, 0, 0, 10, 0, \frac{65}{3}, 48, 0\right)$ For the general problem the solution is: $x^{(g)} = \left(\frac{10}{3}, 0, 0\right)$

10) and, (min)g(y) = $\frac{950}{3}$ (RON/person)

The solution for the primal problem is $x^{(p)} = (5, 0, 0, \frac{65}{3})$ and, $(max)f(x) = \frac{950}{3}$ (RON/person).

TRANSPORT PROBLEM RELATED то THE **MINIMIZING THE COSTS**

During the voyage, the cruise ship has to fuel up in different ports along the established route. The ship needs 1100 tons of HFO(P1), 300 tons DIESEL(P2) and 10 tons OIL(P3). The ports they fuel up are from Algeria(F1), Italy(F2), Tunisia(F3) and Egypt(F4). The moment it arrives in the port from Alger, the tank has only 500 tons of HFO and the moment it arrives in the last established port it has only 300 tons of HFO.

The four ports have these products available in quantities $b_1 = 500$ tons, $b_2 = 210$ tons, $b_3 = 400$ tons and $b_4 = 300$ tons.

The prices of the three products differ from country to country[3] and could be represented like these:

PRODUCT SUPPLIER	HFO (\$/tona)	DIESEL (\$/tona)	OIL (\$/tona)		
F1	650	355	300		
F2	640	345	310		
F3	660	350	290		
F4	645	455	295		

Therefore, the considered problem is a transport with limited capacities[1], [5]. Then the problem mathematical model of this problem is:

$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i, \quad i = \overline{1, m} \\ \sum_{i=1}^{n} x_{ij} = b_i, \quad j = \overline{1, n} \\ 0 \le x_{ij} \le d_{ij}, i = \overline{1, n}, j = \overline{1, m} \\ (\min) f = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \end{cases}$$

Or in a table form:

H ODUCT SUPPLI TR	HFO		DIESEL		OIL		AVAILABLE
EL DUID	650		355		300		500
F1 – Port 3	500						500

50 B (14	640	345	310	040
F2 – Port 4				210
52 Dort 5	660	350	290	400
F3 – Port 5				400
F4 – Port 6	645	455	295	200
F4 - F011 6	300			300
NECESSARY	1100	300	10	1410

From the limit capacities conditions it results that it is necessary that on every line respectively column the inequalities should be verified:

 $\sum_{i=1}^{n} d_{ij} \leq a_i \text{ , } i = \overline{1,m}$

respectively,

$$\sum_{i=1}^{m} d_{ij} \leq b_j , j = \overline{1, n}$$

When determining an initial solution, because of the limited capacities, there are solutions in which we cannot distribute in boxes all the available and necessary quantities.

To avoid such a situation, it is recomended the following algorithm to occupy the boxes:

- on the line(column) of the minimum cost the a) boxes are occupied in the increasing order of prices:
- it is the same procedure on the column(line) of b) the last occupied box from the line(column) from a):
- it is continued in the same way, alternatively, c) until the available and the necessary are out of stock.

Also, the value of the variable from the box that is occupied it is now chosen as the minimum between the available, necessary and the capacity corresponding to the respective variable. When this minimum equals the respective capacity, the value will be underlined which means that on the line, respectively the column of the box the rest of the variables will not be taken automatically zero. This means that, in general will be occupied more than m+n-1 boxes. A number of m+n-1 variables will be considered not underlined.

PRODUC T SUPPLIE R	HFO		DIE	SEL	OIL		AVAILA BLE
F1 – Port	650		355		300		500;0
3	500	<u>500</u>		0		0	566,6
F2 – Port	640		345		310		210;0
4		0		210		0	210,0
F3 – Port	660		350		290		400;390;
5		300		90		1 0	90;0
F4 – Port	645		455		295		300;0
6	300	<u>300</u>		0		0	300,0
NECESS ARY	1100;8 00;		300;90;0		10;0		1410 1410

Now the found solution is degenerated. In our case we obtained four not null solutions(four boxes occupied) and we need 4+3-1 not null so that the solution not be degenerated.

Having fewer than six occupied boxes it results that the dual variables cannot be determined.

To remove this inconvenience it is used the method of essential zeros. This consists of transforming some free boxes into occupied ones marked 0^* , named essential zero. This 0^* is placed in the free boxes with minimum costs, which cannot form cycles with boxes already occupied. In the end it is necessary that the total number of occupied boxes to be 4+3-1.

PRODUC T SUPP IE R	HFO		DIE	DIESEL		L	AVAILAB LE	
F1 – Port	650		35 5		30 0		500;0	
3	500	<u>500</u>		0		0	300,0	
F2 – Port	640		34 5		31 0		010-0	
4		0		21 0		0	210;0	
F3 – Port	660		35 0		29 0		400;390;9	
5		300		90		1 0	0;0	
F4 – Port	645		45 5		29 5		200.0	
6	300	<u>300</u>		0		0 *	300;0	
NECESSA RY	1100;8 0;0	300;30	300;90;0		10;0		1410 1410	

Going to the dual problem, there can be found the following optimal conditions for the transport problems with limited capacities:

1) $u_i + v_j \le c_{ij}$, for free boxes (i,j);

2) $u_i + v_j \ge c_{ij}$, for (i,j) boxes with underline variable;

where u_i , i = $\overline{1,m}$ and v_j , j = $\overline{1,n}$ are dual variable u_i and v_j given by system

 $u_i + v_j = c_{ij}$

and (i,j) represents occupied box index(corresponding to the basic variable).

To find a solution we can take a secondary solution equal with zero and usually we choose $u_1 = 0$.

The values found for $u_1, u_2, ..., u_n$ and $v_1, v_2, ...$, v_n are marked on the border of the solution table in a corresponding way (that is why they are also called border values), and the sums $u_i + v_j$ are written in the upper tight corner of the occupied boxes next to the coefficients c_{ii} .

RODUC T SUPP IE R	HFO V1=650		DIESEL V2=340		OIL V3=280		AVAILAB LE
F1 – Port	650	650	35 5	34 0	30 0	28 0	500;0
U1=0	500	<u>500</u>		0		0	000,0
F2 – Port	640	655	34 5	34 5	31 0	28 5	210;0
U2=5	+	0	-	21 0		0	210,0

F3 – Port	660	660	35 0	35 0	29 0	29 0	400;390;9
5 U3=10	-	300	+	90		10	0;0
F4 – Port	645	645	45 5	33 5	29 5	27 5	200-0
6 U4=-5	300	<u>300</u>		0		0*	300;0
NECESSA RY	1100;8 0;		300;	90;0	10);0	1410 1410

We move on to verifying the optimal condition for the free boxes. If all the conditions are fulfilled then the initial solution is optimal. If at least one condition is not verified, then we continue with the improving process of the solution.

It can be noticed that in (2,1) box, the optimal condition is not fulfilled because

 $u_2 + v_1 = 655 > c_{21} = 640.$

In a cycle we alternatively mark the boxes with + and – starting with the free one. The signs are written in the botton left corner of the box.

To improve the solutions we need to find the minimal, θ , value which x_{ij} take from the boxes marked by – (minus). Then the minimal value θ is added to x_{ij} values, from the boxes marked by + (plus) and is substracted from the values from the boxes marked by – (minus).

Through this process we obtain a new solution for the transport problem, better than the one we started from.

The cycle corresponding to (2,1) box is (2,1),(2,2),(3,2) and (3,1). We mark with + and – . The minimum, θ , value θ = min{210,300}= 210 allows us to write the improved solution given in the table below:

PRODUC T SUPPLIE R	HFO V1=650			DIESEL V2=340		IL 280	AVAILAB LE
F1 – Port	650	650	35 5	34 0	30 0	28 0	500;0
U1=0	500	<u>500</u>		0		0	500,0
F2 – Port	640	640	34 5	33 0	31 0	27 0	210;0
4 U2=-10	+	210	-	0		0	210,0
F3 – Port	660	660	35 0	35 0	29 0	29 0	400;390;9
5 U3=10	-	90	+	30 0		10	0;0
F4 – Port	645	645	45 5	33 5	29 5	27 5	300;0
0 U4=-5	300	<u>300</u>		0		0*	300,0
NECESSA RY	1100;800;30 0;0		300;	300;90;0);0	1410 1410

We have obtained four not null variables. As there cannot be formed cycles to improve the solution and all the optimal conditions are accomplished it results that the problem has only an optimal solution, that is:

$$\mathsf{X} = \begin{pmatrix} 500 & 0 & 0\\ 210 & 0 & 0\\ 90 & 300 & 10\\ 300 & 0 & 0 \end{pmatrix}$$

And the value of the objective function is:

 $\min(f) = 650 \cdot 500 + 640 \cdot 210 + 660 \cdot 90 + 645 \cdot 300 + \\ 350 \cdot 300 + 290 \cdot 10 = 852.700 \$$

Consequently the ship will fuel up with diesel and oil from the port in Tunisia and HFO will be obtained

from all the four ports in quantities 500, 210, 90 and 300 tons.

CONCLUSION

We conclude that mathematical models are very efficient, practice on board, managed to confirm this. If these models addresses issues aimed at the smooth running of the voyage, as seen in the present work(providing a proper diet and supply of fuel needed at a convenient price) and if these issues are addressed by interdisciplinary teams that give optimal solution then the success is assured.

REFERENCES:

[1] Acu, A.M., Acu D., Acu M., Dicu P., Matematiciaplicateîneconomie - Volumul I, Editura ULB Sibiu, [2] Electronic format document:

[2] Electronic format document: <u>http://www.dietadevedeta.ro/tabel-calorii/</u>
[3] Electronic format document: <u>http://www.bunkerworld.com/prices/port/ae/fjr/</u>
[4] Eugen Popescu, Sofia Vitelaru, MihaelaCodres, Daniel Codres, MihaelaGrindeanu, Marius Nicoli, EcaterinaBoarna, "METODE DE PROGRAMARE, GRAFURI ȘI POO -TEORIE ȘI APLICAȚII", Editura Else, București, 2010

[5] Marin, Gh., Popoviciu, I., Vasiliu, P., Chiru, C.,Lupei, T.,CercetarioperationaleProgramareliniara, EdituraAcademieiNavale "MirceacelBatran", Constanta, 2002