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Abstract:This work presents the mathematical method for solving the differential equations by means of which we can 
determine the stresses in the plane composite plates used to build crafts. The results analytically determined are compared with 
the experimental ones. The first chapter of the work presents the differential equation system for composite materials (glass 
reinforced polyester resin) to determine the stress function F(x,y) and the deflection w(x,y) by which the stress condition  in the 
composite is established. In chapter 2 they are presented the analytical resolution methods (simple and double trigonometric 
series), approximate analytical methods (Ritz) and finite element method (COSMOS and ALGOR programs). In chapter 3 the 
theoretical results are compared with the experimental ones obtained on a plate model made by five woven roving plies 
produced in FIROS S.A. Bucharest. The impregnation resin is NESTRAPOL 450 produced by POLICOLOR S.A. Bucharest. 
 
 
1. THE DIFFERENTIAL EQUATION SYSTEM FOR COMPOSITE MATERIAL PLATES 

The fundamental researches on the composite materials (with material orthotropy) are in process of development. By 
applying the elements of “The elastic theory” to the composite plates normally and in median plane stressed, the differential 
equations of strained median surfaces for deflected plate (0,5<w<5h) are: 
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By analyzing the equation system (1) and comparing it with the equation system for isotropic plate (steel or aluminum) 
we note the appearance of stiffness on the two directions which changes the structure of solutions. 
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The equation system (1) has as unknowns the stress function F(x,y) and the deflection w(x,y), which can be 
determined by means of the boundary conditions for various supporting ways (rigid fixing, simple or free side suspension). In the 
previous work, the special forms of equation system (1) have been presented, from which we are interested in particular, in the 
rigid plate with small deflection (w  ≤ 0.2h) of the following form: 
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The presence of a small strain of the plate means that the ship’s shape changes very little due to the water action, the 

stream lines don’t change very much  and the heading resistance doesn’t increase very much due to the hull ‘s strain. 
 
2. THE SOLVING METHODS OF DIFFERENTIAL 

EQUATIONS 
The mathematical resolution of differential 

equation system (1) is possible only in particular cases. 
So, it is necessary a careful analysis of strength structure 
of ship and her skin. Taking into account only the local 
loading, the ship’s strength structure is formed both by 
keelsons, girders and lines alongside and floors, frames 
and beams athwart wise forming a network on which the 
ship’s skin is fixed. I consider the plate mesh, between the 
stiffening members, stressed by water pressure, being 
rigid with a small deflection (w  ≤ 0.2h) where the sectional 
stresses Nx , Ny , Nxy  don’t influence the bending. In this 
case, the equation system (1) under the form of (2) 
represents a linear differential equation with partial 
derivates and constant coefficients. To determine the 
stress and strain conditions in the plate mesh resulted from 
the local loading, means to find a function w which to 
check the differential equation (2) and in the same time the 
boundary conditions depending on the supporting pattern. 

The solving methods can be divided into: 
a) Accurate methods: when the solutions are obtained 

by integrating the differential equations, determining 
the solution of homogeneous equation and a solution 
for inhomogeneous equation. The most usual 
solutions are: by polynomials, by simple or double 
trigonometrically series, by hyperbolic solutions. 

b) Aproximativ analytical methods (energetically): 
when the unknown function, w,  is approximated,  
from energetically reasons, satisfying both the system 
and the supporting conditions on the contour line. 
They are:  the orthogonally method, Ritz, Rayleigh-
Ritz, Bubnov-Galerkin, Treftz, etc. 

c) Aproximativ numerical methods: the finite element 
method or the finite difference method. 

The numerical calculus has been carried out for 
a rectangular plate mesh, made of five plied laminar with 
its sides: a = 350 mm, b = 700 mm, h = 4.3 mm which can 
be used to a ship of a length of 5.5 m and a draft of d = 0.3 
m. The load resulted from the water pressure is: p = ρgd = 
3000 N/m2 . The measured equivalent elastic constants 
are: E1 = 1.872 104 N/mm2 , E2 = 1.826 104 N/mm2 , G12 = 
0.2637 10 4 N/mm, µ12 = µ21 = 0.141. 
 
2.1 The analytical resolution of differential equations 

by double trigonometrically series 
We consider the general case when the plate is 

of a x b x h, simply supported on the contour line, normally 
loaded with p(x,y)  varying on both directions. The system 
of axes is like in Figure 1. 
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Figure 1. Plate loaded with a load distributed on the surface varying on both directions 

 

It is developed the normal load p(x,y) in double Fourier’s series: ( ) ∑∑=
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a
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  m, n = 1,2,3,  (3) 
The parameters pmn  are determined by Euler’s method  and become: 
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For the load uniformly distributed po the parameters pmn become: 
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The strain function (deflection) is also developed in Fourier’s series under the form of: 
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The coefficients wmn are determined from the condition that the expression (6) to satisfy the differential equation of the 
plate (2) for any values x, y and the boundary conditions on the contour line (for the plate simply supported w = 0 and Mx = My = 
0) and it is obtained: 
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The expression of deflection (6) for the particular case when the load p(x,y) = p0 , the case of bottom plates of the 
ship, becomes: 
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The expressions of sectional moments become: 
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The expressions of shearing forces become: 
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The maximum deflection is produced at the middle of the plate, that is, in the coordinate point x = a/2 and y = b/2, and 
in this case the relation becomes: 
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a) The plate simply supported loaded with  p(x,y) = p0 = ct. 
b) The diagram of stresses in the rectangular plate simply supported. 
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Figure 2. The rectangular orthotropic plate loaded with a normal load uniformly distributed 

The numerical results are listed in Table 1. The calculus was performed for the first three terms. 
 
2.2 The analytical resolution of differential equations by simple trigonometrically series 

For the normal load (p) on the plate to be developed in simple trigonometrically series on the chosen direction, for 
instance, on 0x, it must obey two conditions (Figure 3): 

a) The load p must not vary on 0y; 
b) The function p(x) must obey the Diricht’s conditions. 
c) To solve the differential equation (2) it is considered the expression of the deflection under the form of: 

d) 
a

xkw
k

k
πsin1 ∑Υ=  or ∑Χ=

k
k b

ykw πsin2   (12) 
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Figure 3.The plate simply supported loaded with p(x) varying on the direction 

 
For the plate in the Figure 3 we take the form: 

( ) ( )∑Υ=
k

k a
xkyyxw πsin,      (13) 

where:  
Yk – unknown factors formed of the arbitrary functions only of y.  

 The load p(x) is developed in simple Fourier’s series, as an odd function, varying only on Ox axis. 
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The function Yk is determined from the condition that the deflection w(x,y) to satisfy both the boundary conditions and 
the plate equation. 
The biquadrate differential equation, linear, inhomogeneous, with constant coefficients, is: 
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For the anisotropic plates, it appears the inequality H  < Dx , that is why all the roots will be complex and under the 
form of: 

ir 4,3,2,1 ⋅β±α±=       (18) 

where: 
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The general solution of differential equation (16) can be written as: 
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The deflection equation becomes: 
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If the plate is symmetrical about Ox axis, the bent / deflected surface is symmetrical about Ox axis and also the load is 

symmetrical, Yk  must be an even function, it results that Bk = Ck = 0. The general solution is: 
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The integration constants are determined from the boundary conditions (of contour line) for the simply supported plate 
and they are: 
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The elastic surface of the plate is: 

( )
( )

( )
]( )

a
xkkysh

b
sh

b
ch

b
sh

b
ch

ych
b

sh
b

ch

b
ch

b
sh

kD
payxw

kk
kk

k
kk

k
kk

k kk
kk

k
kk

k
kk

y

ππα
αα

βα

α
βα

α
βα

α
αα

βα

α
βα

α
βα

π

sincos1

22
2

2
2

2

22
2

2
2

212,

22

22

22
55

4

−






 +

−−
+










+






 +

+−
−= ∑

 (23) 

The bending moments (Mx , My) and the twisting moment (Mxy) are calculated and the numerical results are listed in Table 
1. 
 
2.3 Resolution of differential equation by Ritz method 

By neglecting the influence of shearing forces, the expression of strain potential energy of an orthotropic plate during 
the bending, taking into account the function (2), is: 
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The potential energy of external forces has the expression: 

( ) ( )∫∫−= dxdyyxwyxpU e ,,      (25) 

The expression of total potential energy is: 

ei UU +=Π     (26) 
The deflection is: 

 ( ) ( ) ( ) ( )yxwcyxwcyxwcyxw nn ,...,,, 2211 +++=    (27) 
where:  

wi - the arbitrary functions which verify the boundary conditions on the plate contour; 
 ci - the integration constants. 

The minimum condition leads to: 
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from which a linear system of polynomial equations results by means of which the integration constants ci  are determined and 
the problem is solved. 
For the plate mesh considered, we take the following function for the deflection: 

w = c1w1 + c2w2     (29) 
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The potential energy of external forces is: 
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Taking the minimum condition (28), we have: 
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From the system (32) we obtain the values of the constants: 
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We easily see that these coefficients are in fact, the coefficients of double trigonometrically series.  
The deflection will have the following form: 
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The moments and the shearing forces can be calculated and the numerical results are listed in Table 1. 
 
2.4 Resolution of differential equation by M.E.F (COSMOS M and ALGOR). 

Due to the geometrical and loading symmetry of 
the plate simply supported with fixed ends, it has been 
studied ¼ of the plate discussed into 2450 quadratic finite 
elements with the side of 5 x 5 mm forming a network with 
2556 mesh points. The study was performed by two 
different programs (COSMOS M and ALGOR). 

To study and compare the results of the two 
cases, we keep the same loading, discussion and 
elements on the symmetry axis. Regarding the 
parameters, it was studied the deflection, turning, bending 
and twisting moments, unit and equivalent stresses on 
each element. The results are listed in Table 1. 

 
 
 
 

3. THE EXPERIMENTAL RESULTS 
To check the value of maximum deflection 

obtained by the theoretical methods mentioned above, we 
built a device by means of which we measured the 
maximum deflection in the middle of the plate. The device 
is formed of two rigid angle bar frames by means of which 
we performed the fixing and with only one frame we made 
the support on the sides. The loading was made with fine, 
dry sand with a density of  ρ = 1.3 kg/dm2 . The thickness 
of sand layer was calculated from the condition of loading 
with a load uniformly distributed p = 3000N/m2 . The 
deflection was measured in the middle of the plate by a 
comparator. The comparation between the calculated 
values and the measured ones for the five plied laminar is 
shown in Table 1. 
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Table 1 
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Figure 4. The plate studied with symmetry planes and coordinate system of axes. 

The hatched part was studied 
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Method of 
determination 

Maximum analyzed values 
wmax 
[mm] Mx [mm/mm] My[mm/mm] Mxy [mm/mm] σx[mm/mm] Σy  [mm/mm] 

The plate simply supported 

Experimental 4,2 43,601 11,91 -6,91 14,15 3,86 
Double 

trigonometrical 
series 

4,383 - - - - - 

Simple 
trigonometrical 

series 
1,413 44,157 16,31 -5,44 - - 

Ritz method 4,18 44,8 13,2 -8,31 14,57 4,278 

MEF (COSMOS M 
program) 4,424 - - - - - 

MEF (ALGOR 
program) 4,205 - - - - - 

The fixed plate 
Experimental 1,19 - - - - - 

MEF (COSMOS M 
program) 0,961 16 3,44 - 5,91 1,12 
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