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Abstract: The “Asymmetry coefficients” due to Waz et al have been proved by them in the case of the damped driven pendulum to 
distinguish between regular and chaotic orbits of a dynamical system. The test is equally applicable to data generated from maps, 
ordinary differential equations and to the experimental data and have some useful advantages when is compared with other tests for 
chaos. Because we have thought that other numerical studies are necessary for a better understanding of the behavior of these 
indicators we applied them to other dynamical system, well-studied in the literature by means of accepted tools. In this paper we 
investigate the performance of the “Asymmetry coefficients” when applied to a coupled-single species population map and to the motion 
of a square prism in cross-flow and show that the test is straightforward to implement and performs extremely well. 
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1. INTRODUCTION 
Chaotic behavior often occurs in engineering’s and 

natural systems. From compound pendulums to dripping 
faucets, from predator-prey ecologies to measle epidemics, 
from oscillatory chemical reactions to irregular beats of a 
chicken heart, the underlying mechanism of chaos have been 
details in hundreds of papers and experiments. 

In the past chaotic behavior has been seen as 
irregular or unpredictable and was often attributed to random 
external influences. Further studies have shown that chaotic 
behavior is deterministic, and is a typical characteristic of 
nonlinear systems. 

There are various methods/indicators for detecting 
chaos. The first in chronological order were time series 
(observation of the state variables), phase portraits, Poincare 
section of surface, Lyapunov exponents, bifurcation diagram, 
Fourier spectra, Kolmogorov entropy, correlation dimension 
and so on. Some of them are rarely used, because they are 
difficult to apply in practical systems 

The recent developed methods seem to be more 
efficient and faster than the older ones, especially for systems 
with many degrees of freedom. Most of these 
methods/indicators are based on deviation vectors, for 
instance, the spectra of stretching numbers (SSN), the 
alignment indices (GALI, SALI), the average power law 
exponent (APLE), the fast Lyapunov indicator (FLI), the mean 
exponential growth of nearby orbits (MEGNO) etc. All these 
methods require the numerical integration of the equations of 
motion together with the so-called variational equations, which 
govern the time evolution of deviation vectors. Usually, these 

techniques require quite a lot of computing time. To overcome 
this difficulty some symplectic or non-symplectic integrators 
have been proposed [1-8]. 

Unfortunately, in practical applications only a limited 
set of the observational data is available and the task of 
determining whether the observed motion is chaotic or regular 
may be difficult and the uncertainty of the results rather large. 
For this situation, other tests have been introduced in the 
literature [9-12]. One of them has been proposed by Gottwald 
and Melbourne, and returns 0 for a non-chaotic system and 1 
for a chaotic system. In 2009, Waz et al proposed an 
alternative, very simple and related to the observational data, 
statistical indicator of chaos. In their approach the values of a 
time dependent function describing the studied motion are 
recorded in a sequence of time intervals and each of these 
recordings are considered statistical distributions. Then, the 
“asymmetry coefficients” of these distributions are defined and 
their behavior for ordered and chaotic orbits is analyzed. Their 
indicator was applied only in the simple case of the damped 
driven pendulum. We have thought that other numerical 
studies are necessary for a better understanding of this 
indicator so, in the present paper, we applied it to a coupled-
single species population map and to the motion of a square 
prism in cross-flow. 

 The organization of rest of the paper is as follows. 
Section 2 contains the details of the method proposed by Waz 
et al. All calculations and numerical results are given in 
Section 3. The final remarks and conclusions are presented in 
Section 4. 

 
2. METHOD OF THE ASYMMETRY COEFFICIENTS 

  For the sake of completeness let us briefly recall the definition of the “Asymmetry coefficients” and their behavior for regular 
and chaotic orbits. The interested reader can consult [9] to have a more detailed description of the method. 

 
Let )(tX  be a function characterizing the motion we are going to analyze. Usually, in practical applications, )(tX  is 

known as a part of the solution of a differential systems of equations or from experimental measurements, so its values are given in a 

discrete set of points { }iX . 

Let us define a time-series ( ){ }KkTTttXtX kfk ,..,2,1/,),()( 0 =∈=  with a fixed 0T  and 

Kfff TTT <<< ...21 . The terms of the series are treated as statistical distributions. The starting time 0T  and the final one 

KfT denote the beginning and the end of the k-th distribution )(tX k  and 0TTT kfk −=∆  is its length.  

     The asymmetry coefficients of the discrete k-th distribution kX  are defined as: 
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,...3,2,1,12 =+= jjq , and c is a constant. kN  is the number of points in the k-th distribution, i.e. i
k
it τ= , 

KkNi k ,...,2,1,,...,2,1 == , with Kf
k

kN
k TtTt == ,01 , KNNN <<< ...21 . Since 0T  is the same for all k the 

length of the k-th distribution is proportional to kN . 

  Waz et al [9] shown that the qualitative results are the same for all c chosen so 0)( ≥+ ctX k . Using the damped driven 

pendulum, Waz et al demonstrated that for a periodic motion the asymmetry coefficients approach 0 while fT  approaches infinity. For 

a chaotic orbit no regular asymptotic behaviour was observed. 
   

 
3. NUMERICAL RESULTS 
3.1. A coupled-single species population map 

A general model for the growth of a single-species population with non-overlapping generations is 

                                                ( ) ( ) b
tttt NaNNfN −

+ +== 11 λ                                                                                         (2) 
 

where tN  and 1+tN  are the populations in successive generations, λ  is the finite rate of increase and a, b are constant defining 
the density-dependent feedback term. Let us consider the following coupled system 
 

( ) ( ) ( )( )tttt NfMfcNfN −+=+1  , ( ) ( ) ( )( )tttt MfNfcMfM −+=+1                                    (3) 
   

This system can be clearly interpreted in populations light dynamics. One can think of ( )tNf  and ( )tMf  as simulating 
the population dynamics of a particular species at two adjacent locations. If the species can migrate in both directions within the time 

intervals between the stages of their reproduction and death then [ ]1,0∈c  represents the fraction of these species which migrate to 
the neighboring location [13, 14].  

The effect of coupling consists in a rich dynamic behavior. A detailed analysis has been performed for 6=b , 60=λ , 

003.0=a  and for four values of c. For 0075.0=c  the solution is periodic with period 8=T , for 0115.0=c  it is a quasi-

periodic while for 0005.0=c  and 25.0=c  the solutions are chaotic (see Figure 1).  
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Figure 1: Time series for component tN  

a) 0005.0=c ; b) 0075.0=c ; c) 0115.0=c ; d) 25.0=c  
 

 
The calculations of asymmetry coefficients have been performed for first 50,000 iterations. The origin of each distribution 

corresponds to the initial time 10 =T  whereas the final points of each distribution have been selected as 

5000,1,10 == kkT kf . c was fixed at 10. In addition, ( ) tNtX =  . 

Figure 2 presents the asymmetry coefficient 3A  as function of time, i.e. the lengths of the distributions. For an ordered orbit 

(periodic or quasiperiodic) the coefficient 3A  converges to zero, after a short transition period. An irregular behavior of 3A  can be 

seen for the chaotic orbits. The qualitative results are the same for other asymmetry coefficients ( ,5A 7A  and so on) and for 

( ) tMtX = . The right panel shows an enlargement of left panel for the first 8,000 iterations. 
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Figure 2: Dependence of asymmetry coefficient 3A  with time 
 

Table 1 presents the mean values of 7,5,3, =qA q , calculated for t in the range from 40,000 to 50,000. This range was 

used throughout the paper. 
 

 (a) (d) (b) (c) 

3A  0.0015 -0.00039 
-1.0266 710−⋅  -2.4791 710−⋅  

5A  0.0064 -0.0020 
-6.1522 710−⋅  -1.4867 610−⋅  

7A  0.0224 -0.0073 
-2.7688 610−⋅  -6.6871 610−⋅  

 

Table 1: The mean values of 7,5,3, =qA q  

 

A better separation of these plots can be realized showing the separation of qAlg  with time (see Figure 3). It is obvious 

that 3lg A converges to large negative values for periodic orbits and behaves randomly for chaotic orbits. In fact, for all the examples 

discussed in the paper these features have remained unchanged so, in the following, we were interested only in a numerical 
comparison of asymmetry coefficients’ mean values. 
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Figure 3: Dependence of the logarithms of asymmetry coefficient 3A  with time 
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 3.2. Motion of a square prism in cross-flow 

 
Let a square prism be supported by a non-linear spring with a linear viscous damper. The prism is assumed to be excited 

harmonically and kept in a steady fluid flow, perpendicular to its displacement. The motion is governed by differential equation: 
  

                                 ( ) LFtFykyk
td
ydc

td
ydm +=+++ ωcos3

312

2
                                                                        (4) 

where y  is the displacement, m  is the mass of the prism, c  is the linear viscous damping coefficient, 1k  and 3k  are, 

respectively, the coefficients of linear and cubic stiffness, F  and ω  are, respectively, the amplitude and the frequency of the 

harmonic force, t  is the time and LF  is the lift force given by 
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In (5), ρ  is the flow density, D  and L  are the prism’s dimensions, V  is the flow velocity whereas 1B  and 3B  are 
coefficients characterizing the geometry of the bluff body [15]. Using the non-dimensional quantities 
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                                 τγγ
τ

ζ
τ

ζ
τ

cos3
31

3

32

2

aa Fxx
d

xd
d

xd
d

xd
=++








++                                                               (6) 

 

Equation (5) was numerically integrated in the interval [ ]πτ 200,0∈  with zero initial conditions for the following 

parameters: ,1.0,0.31,7.2 31 =−== ζBB  12256.0,0.131 === βζζ  and 0.10=aF . The non-dimensional 

flow velocity was taken as the bifurcation parameter and varied from 5 to 14. This choice is based on the results obtained in [15]. The 

time step for the integration was taken as 256/T=∆τ  ( π2=T  is the period of the harmonic excitation force τcosaF ) so 
we get a number of 25,601 points of integration. 
 For small values of U the prism executes periodic oscillations with period 1. As U increases and reaches a value of 8.41 the 
period 1 orbit bifurcates into a period 2 orbit. Further increases in U result in a series of period 4 orbit ( U = 8.9), period 8 orbit (U = 8.94) 
and so on. Starting with U = 8.96, the orbit becomes chaotic. Within the chaotic window narrow periodic windows appear. For our 
purposes we selected four values of U. Thus, for U = 8.5 and U = 10.3 we get a period 2 orbit and a period 3 orbit, respectively, 
whereas for U = 9.2 and U = 12.3 the orbits are chaotic (see Figure 4). The points of the Poincare map corresponding to one period of 
harmonic excitation are also plotted in Figure 4 and are indicated by a green square. 
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Figure 4: Phase plane for the square prism in cross-flow 

 
a) U = 8.5; b) U = 9.2; c) U = 10.3; d) U = 12.3 

 

To avoid the initial transition we took as origin of each distribution time τ∆⋅= 56020T  so we used practically 20,000 

values in the time series. The ends of the distributions have been selected as 2000,1,10 =⋅= kkT kf . The asymmetry 

coefficients have been calculated with c = 6 and ( )ττ xX =)( . Figure 5 presents the behavior of 3lg A . The two curves 

corresponding to periodic orbits converge to large negative values and are well separated from the two curves associated to the chaotic 
orbits. 
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Figure 5: Dependence of the logarithms of asymmetry coefficient 3A  with time 

 
3.3. Parametric studies 
In this section, we have performed a number of numerical simulations in order to obtain an idea about the influence of some 

parameters, like constant c or the number of measurement points, on the behavior of the asymmetry coefficients. To this purpose, we 
worked with the coupled-single species population map.  

3.3.1. Dependence on c 
As we have already mentioned, the qualitative results concerning the asymmetry coefficients remain unchanged no matter 

which value for c is considered. To prove this, Table 2 presents the mean values of 7A  calculated with different values of c. It is 

obvious that, in every case, the values of 7A  for chaotic orbits differ by few orders of magnitude from those corresponding to periodic 

orbits. In addition, the values of 7A  become greater and greater while ( )cN tt
+min  tends to zero. 
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 (a) (b) (c) (d) 

c = 0 0.0229 
- 2.8252 610−⋅  - 6.8154 610−⋅  

- 0.0075 

c = 50 0.0205 
- 2.5639 610−⋅  - 6.2185 610−⋅  

- 0.0067 

c = 250 0.0144 
- 1.8715 610−⋅  - 4.6052 610−⋅  

- 0.0047 

c = 1250 0.0058 
- 7.9625 710−⋅  -2.0047 610−⋅  

- 0.0019 

c = 3000 0.0028 
- 3.9705 710−⋅  - 1.0083 610−⋅  

- 0.0009 

c = 10000 0.0009 
- 1.3211 710−⋅  - 3.3744 710−⋅  

- 0.0003 

Table 2: Dependence on constant c of the asymmetry coefficient 7A  
 

3.3.2. Dependence on the number of measurement points 
Because a periodic motion is self-similar over sufficiently large intervals of time, it is expected that 

,...7,5,3, =qA q approach 0 while number of measurement points N (or number of iterations for maps) tends to infinity. In the 

same time, for a chaotic motion no regular asymptotic behavior is expected. To verify this statement, we significantly increased the 
number of iterations. Table 3 presents the effect of increasing N from 50,000 to 500,000.  
 

 

Table 3: Dependence on the number of iterations of the asymmetry coefficient 7A  
 
In Figure 6 we report the results of the numerical computation for N = 500,000. Both the Table 3 and the Figure 6 agree very 

well with our expectations. 
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Figure 6: Dependence of the logarithms of asymmetry coefficient 7A  with time 

 
4. Conclusions 

The goal of this work was to apply the “Asymmetry coefficients” method for distinguishing between ordered and chaotic orbits 
in the case of discrete or continuous-time dynamical systems. We investigated the coupled-single species population map and the 
motion of a square prism in cross-flow. 

The main conclusions of the study are: 
a) For an ordered orbit (periodic or quasi-periodic) the asymmetry coefficients converge to zero whereas for a chaotic orbit no 

sign of convergence can be observed; 
b) If the logarithms of asymmetry coefficients are plotted instead, a convergence to large negative values is observed for ordered 

orbits and no convergence in case of chaos. The separation between the two types of curves becomes more evident by the 
time passes (or number of iterations grows for maps); 
 

N (a) (b) (c) (d) 
50,000 0.0229 

-2.8432 610−⋅  -6.8163 610−⋅  
-0.0075 

100,000 0.0028 
-7.1140 710−⋅  -1.7055 610−⋅  

0.0024 

500,000 
-7.8785 410−⋅  -2.8591 810−⋅  -6.8255 810−⋅  -7.9033 510−⋅  
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c) The qualitative results concerning the asymmetry coefficients remain unchanged no matter which value for c is considered 

(which ensure the condition 0)( ≥+ ctX k , X(t) being the analyzed function) . The values of asymmetry coefficients 

become greater and greater while ( )ctX
t

+)(min  tends to zero; 

d) The method has a few advantages when compared with other similar methods. Thus: 
- the equations of the underlying dynamics do not need to be known; 
- the dimensionality of the vector field has not practical limitations; 
- the nature of the dynamical system is irrelevant for the implementation of the test. The test is applicable to data 

generated from maps, ordinary differential equations and to the experimental data; 
- the computational effort is of low cost, both in terms of programming effort and in terms of computational time; 

e) For numerical integrations we have used modern software, i.e. MatLab package, where the possibility of occurring of round off 
error be minimum; 
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