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Abstract: In this paper it is described a new fast implementation in the 'C' programming language of the Kruskal’s algorithm to 
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1. INTRODUCTION  

Let it ( ), ,G X U l= , { }, , ,1 2X x x xn=  a connex graph ( necessary assumption to ensure the existence of at least one 

tree ) undirected with edges that hold values ( ),l x xi j . 

A Spanning Tree is a free tree that contains part of the edges of the graph that cover all the vertices of the graph.  One 
edge covers the vertices that it unites.  

A connex graph may have multiple spanning trees. If it is encountered a high number of cycles in the graph, than there will 
be also a high number of spanning trees in this graph. For a connex graph with n vertices there will be spanning trees that have 

1n −  edges.  
We are interested in computing the MST for a given graph. In more details, we are looking for linking edges of the graph 

between all vertices so that we can obtain the minimum sum of the edges' values from the graph. 
This problem is found in the computer networking field,  where the purpose is to minimize the length of the cable that is 

used to connect all the nodes that must communicate between them. Moreover, the problem is encountered in the road network 
design, sewer systems, computer networks.  

2. KRUSKAL'S ALGORITHM 
The algorithm has been developed in 1956 by Joseph Kruskal. The algorithm is a greedy algorithm in graph theory that 

finds a  MST for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, 
where the total weight of all the edges in the tree is minimized (2). 

Let it be ( ), ,G X U l= , { }, , ,1 2X x x xn=  , a finite graph,  undirected, connex having edges with values. The idea of 
the Kruskal's  algorithm is to select at each step the edges with minimum value from the unselected edges. The constraint is that the 
selected edge does not form a cycle with the edges already included in MST (previously selected). 

The condition for the edge ( ),x xi j , not to form a cycle with the other  edges previously selected, is that the vertices xi  

and x j  to be in distinct connex components.  

At the beginning, each vertex forms a connex component.  Next, a connex component contains all the vertices covered 
with edges from MST and the uncovered vertices  build other connex components.  

An edge that links two vertices from the same connex component will build a cycle with the previously selected edges. 
This type of edge is not accepted.  It is allowed only an edge that links vertices from distinct connex components.  

Let it be nrc the number of connex components of the graph.  At the beginning, it is considered that nrc = n. 
The Kruskal's 1 algorithm for discovering of a MST from G graph can be described as it follows: 
 

Reading data 
Ascending sorting of the edges' value 
Create sorted queue of the edges 
nrc=n 
repeate 
{ 
 extract the edge with the minimum value from the queue 
 if the extracted edges is acceptable 
 { 
  print nrc 
  nrc = nrc -1 
  update the connex components 
 } 
} 
until nrc == 1 
 

3. ALGORITHM IMPLEMENTATION 

 Let it be ( ), ,G X U l= , { }, , ,1 2X x x xn=  , a finite graph,  undirected, connex having edges with values and m edges. 
The program has as input a text file with m+1 lines. 

On the first line we find n , the number of vertices and m , the number of edges from the G  graph separated with a blank space. On 
each of the following m lines we have the edges and the values from the G  graph, separated with one blank space. 

The program determines the MST for the G  graph.  
 
// Kruskal's algorithm 
#include <stdio.h> 
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#include <stdlib.h> 
#include <conio.h> 
#include <malloc.h> 
#define dim 1000      // maximum number of vertices from the graph  
 
typedef struct SET  
{ 
int c;                //c  the number of elements from the set  
int S[dim];          //S the array with the set elements  
} set; 
 
typedef struct EDGE  
{ 
int x; int y; int val; 
}edge;  
 
edge mu[dim];       // mu the edges' array 
set C[dim];           // C the array of the connex components  
 
// Allocate matrix / 2-dimesional array  
// Function to allocate the squared matrix / 2-dimensionl array of n+1 dimension 
// The function returns the address of the matrix or NULL  
int ** alocmat (int n)  
{ 
int i; 
int ** p=(int **) malloc ((n+1)*sizeof (int*)); 
if ( p != NULL) 
for (i=0; i<=n ;i++) 
p[i] =(int*) malloc ((n+1)*sizeof (int)); 
return p; 
} 
 
//Function for reading the input file  
int read(int &n, int &m, char *name)  
{  
int i; 
FILE *f; 
if((f=fopen(name,"r")) != NULL)  
{ 
fscanf(f,"%d",&n); 
fscanf(f,"%d",&m);  
for(i=0;i<=m-1;i++) 
fscanf(f,"%d %d %d",&mu[i].x,&mu[i].y,&mu[i].val);  
return 1; 
} 
else 
return 0; 
} 
 
// Function to create the connex components  
void create_connex(int n)  
{  
int i,j; 
j=1; 
for(i=0; i<=n-1; i++) 
{  
C[i].c=1; 
C[i].S[0]=j; 
j++; 
} 
}  
 
// Function to determine the connex components that contain the x vertix  
int connex(int x,int ncc)  
{  
int j,i; 
for(i=0;i<=ncc-1;i++)        
{  
for(j=0; j<=C[i].c-1; j++) 
if(x==C[i].S[j]) 
return i; 
} 
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return -1; 
} 
 
// Union of two connex components C[a]=C[a] U C[b] 
void UNION(int a,int b,int &ncc)   
{ int i; 
for(i=0;i<=C[b].c-1;i++) 
if(connex(C[b].S[i],ncc)!=a) 
{ C[a].S[C[a].c]=C[b].S[i]; C[a].c++; } 
for(i=b; i<=ncc-1; i++) 
C[i]=C[i+1]; 
ncc--; 
} 
 
// Function to determin the edge with the minimum value  
edge min_edge(int &m)  
{  
int i,min=mu[0].val,poz=0; 
edge x=mu[0]; 
for(i=1; i<=m-1; i++) 
if(mu[i].val < min) 
{ min=mu[i].val; poz=i; x=mu[i]; } 
for(i=poz; i<=m-2; i++)    // delete edge with minimum value from the graph  
mu[i]=mu[i+1];  
m--; 
return x; 
} 
 
// Function to implement the Kruskal's algorithm 
void Kruskal(int n, int &m, int ncc, int **mst) 
{ 
edge a; 
create_connex(n); 
int u,v,i,j,nm=0; 
for(i=1;i<=n;i++) 
for(j=1;j<=n;j++) 
{  
if(i!=j) 
mst[i][j]=-1; 
else 
mst[i][j]=0;  
} 
while (nm < n-1)     // while there weren't selected n-1 edges cat  
{  
a=min_edge(m); 
u=a.x; v=a.y; 
if(connex(u,ncc)!=connex(v,ncc))   // if u and v are in distinct connex components  
{  
UNION(connex(u,ncc),connex(v,ncc),ncc); 
mst[u][v]=a.val;              // adding edge to MST 
mst[v][u]=a.val; 
nm++;  
} 
else 
continue;  
} 
} 
 
// Function to display MST  
void display(int n,int **mst)  
{  
int i,j,valmin=0; 
printf("\n\n The Minimum Spanning Tree has the edges \n\n"); 
for(i=1; i<=n; i++) 
for(j=i+1; j<=n; j++) 
{  
if(mst[i][j] > 0) 
{ 
valmin+=mst[i][j]; 
printf("\n Edge ( x%d , x%d ) with value %d \n", i,j,mst[i][j]); 
} 
} 
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printf("\n\n The minimum value for MST is %d \n",valmin);  
} 
 
// n the number of vertices of the graph  
// m the current number of edges of the graph  
// ncc the current number of connex components of the graph  
// mst the spanning tree with minimum value  
int main() 
{  
int n,m,ncc; 
int **mst;  
char name[30]; 
printf("\n\n Kruskal's algorithm \n\n"); 
getch(); 
printf(" File name "); 
gets(name); 
if(read(n,m,name)) 
{ 
printf("\n The file %s was read \n",name); 
printf("\n The graph has %d vertices \n",n); 
printf("\n The graph has %d edges \n\n",m); 
getch(); 
mst=alocmat(n); 
ncc=n; 
Kruskal(n,m,ncc,mst); 
display(n,mst); 
free(mst); 
} 
else 
printf(" Error reading file %s \n",name); 
getch(); 
} 
 

4. AN EXAMPLE 

Let it be the finite graph, undirected and connex ( ), ,G X U l= , { }, , , , ,51 2 3 4 6X x x x x x x=  having edges with values. 
The edges and the values are represented in the Table 1.  

 
The finite, undirected and connex graph having edges with values 

Edge Value Edge Value 

( ),1 2x x  
6 ( ),3 4x x  

5 

( ),1 3x x  
1 ( ), 53x x  

6 

( ),1 4x x  
5 ( ),3 6x x  

4 

( ),2 3x x  
5 ( ),4 6x x  

2 

( ), 52x x  
3 ( ),5 6x x  

6 

Table 1 
 By applying the Krukal’s algorithm we obtain the spanning tree having the minimum value 15. This can be observed in 
Table 2.  

The MST 
Edge Value Edge Value 

( ),1 3x x  
1   

  ( ),3 6x x  
4 

( ),2 3x x  
5 ( ),4 6x x  

2 

( ), 52x x  
3   

Table 2 
  
Running the above program we obtain the following results:  
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Kruskal's algorithm 
File name graph.txt 
The file graph.txt was read 
 
The graph has 6 vertices 
The graph has 10 edges 
The Minimum Spanning Tree has the edges 
 
Edge ( x1 , x3 ) with value 1 
Edge ( x2 , x3 ) with value 5 
Edge ( x2 , x5 ) with value 3 
Edge ( x3 , x6 ) with value 4 
Edge ( x4 , x6 ) with value 2 
 
The minimum value for MST is 15 
 

5. CONCLUSION 
This implementation of the Kruskal’s algorithm can be used for the future fast implementation of the Prim’s algorithm to 

find a MST for  a finite graph,  undirected, connex having edges with values. 
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